Skip to main content

Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective

  • Chapter
  • First Online:
Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

Abstract

Classical DNA polymerases, which replicate DNA rapidly and with high fidelity, stall upon encountering DNA damage. Thus nonclassical polymerases, which have evolved to accommodate DNA damage, are necessary to overcome these replication blocks. These nonclassical polymerases mainly belong to the Y-family and replicate DNA slower and with lower fidelity than their classical counterparts. Y-family polymerases employ surprising strategies to incorporate nucleotides opposite DNA damage. These include the use of larger and less constrained active sites, the use of Hoogsteen base pairing, and the use of amino acid side chains as templates. Y-family polymerases also engage in protein–protein interactions that are important for their recruitment to stalled replication forks and the coordination of their activities on the DNA. These polymerases function within a dynamic network of protein–protein interactions that are mediated by intrinsically disordered regions of these enzymes. This review focuses on the biochemical and structural studies of the Y-family polymerases, which have provided clear insights into their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRCT:

BRCA1 C-terminal

CTD:

C-terminal domain

NMR:

Nuclear magnetic resonance

PAD:

Polymerase-associated domain

PCNA:

Proliferating cell nuclear antigen

PIP:

PCNA-interacting protein

Pol:

Polymerase

RIR:

Rev1-interacting region

SAXS:

Small-angle X-ray scattering

TT:

Thymine–thymine

UBM:

Ubiquitin-binding motif

UBZ:

Ubiquitin-binding zinc finger

UV:

Ultraviolet

XPV:

Xeroderma pigmentosum variant form

References

  • Acharya N, Johnson RE, Prakash S, Prakash L (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26(24):9555–9563

    PubMed  CAS  Google Scholar 

  • Acharya N, Yoon JH, Gali H, Unk I, Haracska L, Johnson RE, Hurvvitz J, Prakash L, Prakash S (2008) Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci USA 105(46):17724–17729

    PubMed  CAS  Google Scholar 

  • Akagi J, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F (2009) Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair 8(5):585–599. doi:10.1016/j.dnarep.2008.12.006

    PubMed  CAS  Google Scholar 

  • Barkley LR, Palle K, Durando M, Day TA, Gurkar A, Kakusho N, Li J, Masai H, Vaziri C (2012) c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Pol eta recruitment to stalled replication forks. Mol Biol Cell 23(10):1943–1954. doi:10.1091/mbc.E11-10-0829

    PubMed  CAS  Google Scholar 

  • Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310(5755):1821–1824

    PubMed  CAS  Google Scholar 

  • Biertuempfel C, Zhao Y, Kondo Y, Ramon-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W (2010) Structure and mechanism of human DNA polymerase eta. Nature 465(7301):1044–1048. doi:10.1038/nature09196

    CAS  Google Scholar 

  • Bomar MG, Pai MT, Tzeng SR, Li SSC, Zhou P (2007) Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. EMBO Rep 8(3):247–251

    PubMed  CAS  Google Scholar 

  • Bomar MG, D’Souza S, Bienko M, Dikic I, Walker GC, Zhou P (2010) Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y Family DNA polymerases iota and Rev1. Mol Cell 37(3):408–417. doi:10.1016/j.molcel.2009.12.038

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang ZG, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276(47):43487–43490

    PubMed  CAS  Google Scholar 

  • Burschowsky D, Rudolf F, Rabut G, Herrmann T, Matthias P, Wider G (2011) Structural analysis of the conserved ubiquitin-binding motifs (UBMs) of the translesion polymerase iota in complex with ubiquitin. J Biol Chem 286(2):1364–1373. doi:10.1074/jbc.M110.135038

    PubMed  CAS  Google Scholar 

  • Carlson KD, Washington AT (2005) Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Mol Cell Biol 25(6):2169–2176

    PubMed  CAS  Google Scholar 

  • Choi JY, Guengerich FP (2008) Kinetic analysis of translesion synthesis opposite bulky N-2- and O-6-alkylguanine DNA adducts by human DNA polymerase REV1. J Biol Chem 283(35):23645–23655. doi:10.1074/jbc.M801686200

    PubMed  CAS  Google Scholar 

  • Choi JY, Angel KC, Guengerich FP (2006) Translesion synthesis across bulky N-2-alkyl guanine DNA adducts by human DNA polymerase kappa. J Biol Chem 281(30):21062–21072

    PubMed  CAS  Google Scholar 

  • Cortese MS, Uversky VN, Keith Dunker A (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98(1):85–106. doi:10.1016/j.pbiomolbio.2008.05.007

    PubMed  CAS  Google Scholar 

  • Day TA, Palle K, Barkley LR, Kakusho N, Zou Y, Tateishi S, Verreault A, Masai H, Vaziri C (2010) Phosphorylated Rad18 directs DNA polymerase eta to sites of stalled replication. J Cell Biol 191(5):953–966. doi:10.1083/jcb.201006043

    PubMed  CAS  Google Scholar 

  • de Groote FH, Jansen JG, Masuda Y, Shah DM, Kamiya K, de Wind N, Siegal G (2011) The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes. DNA Repair 10(9):915–925. doi:10.1016/j.dnarep.2011.04.033

    PubMed  Google Scholar 

  • Dieckman LM, Freudenthal BD, Washington MT (2012) PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. Subcell Biochem 62:281–299

    PubMed  CAS  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764. doi:10.1016/j.sbi.2008.10.002

    PubMed  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    PubMed  Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15(1):35–41. doi:10.1016/j.sbi.2005.01.002

    PubMed  CAS  Google Scholar 

  • Freudenthal BD, Ramaswamy S, Hingorani MM, Washington MT (2008) Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 47(50):13354–13361

    PubMed  CAS  Google Scholar 

  • Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT (2010) Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat Struct Mol Biol 17(4):479–484. doi:10.1038/nsmb.1776

    PubMed  CAS  Google Scholar 

  • Friedberg EC, Wagner R, Radman M (2002) Molecular biology – specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296(5573):1627–1630

    PubMed  CAS  Google Scholar 

  • Guo CX, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22(24):6621–6630

    PubMed  CAS  Google Scholar 

  • Guo CX, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, Ulrich HD, Friedberg EC (2006) REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 23(2):265–271

    PubMed  CAS  Google Scholar 

  • Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 25(4):458–461

    PubMed  CAS  Google Scholar 

  • Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S (2001a) Physical and functional interactions of human DNA polymerase eta with PCNA. Mol Cell Biol 21(21):7199–7206

    PubMed  CAS  Google Scholar 

  • Haracska L, Johnson RE, Unk I, Phillips BB, Hurwitz J, Prakash L, Prakash S (2001b) Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc Natl Acad Sci USA 98(25):14256–14261

    PubMed  CAS  Google Scholar 

  • Haracska L, Kondratick CM, Unk I, Prakash S, Prakash L (2001c) Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell 8(2):407–415

    PubMed  CAS  Google Scholar 

  • Haracska L, Unk I, Johnson RE, Johansson E, Burgers PMJ, Prakash S, Prakash L (2001d) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15(8):945–954

    PubMed  CAS  Google Scholar 

  • Haracska L, Prakash L, Prakash S (2002a) Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci USA 99(25):16000–16005

    PubMed  CAS  Google Scholar 

  • Haracska L, Prakash S, Prakash L (2002b) Yeast Rev1 protein is a G template-specific DNA polymerase. J Biol Chem 277(18):15546–15551

    PubMed  CAS  Google Scholar 

  • Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S (2002c) Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Mol Cell Biol 22(3):784–791

    PubMed  CAS  Google Scholar 

  • Hingorani MM, O’Donnell M (2000) Sliding clamps: a (tail)ored fit. Curr Biol 10(1):R25–R29

    PubMed  CAS  Google Scholar 

  • Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, Ohmori H, Sato M (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem 284(16):10552–10560

    PubMed  CAS  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135–141

    PubMed  CAS  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24(11):1344–1348. doi:10.1093/bioinformatics/btn195

    PubMed  CAS  Google Scholar 

  • Johnson RE, Kondratick CM, Prakash S, Prakash L (1999a) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285(5425):263–265

    PubMed  CAS  Google Scholar 

  • Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283(5404):1001–1004

    PubMed  CAS  Google Scholar 

  • Johnson RE, Prakash S, Prakash L (2000a) The human DINB1 gene encodes the DNA polymerase Pol theta. Proc Natl Acad Sci USA 97(8):3838–3843

    PubMed  CAS  Google Scholar 

  • Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000b) Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406(6799):1015–1019

    PubMed  CAS  Google Scholar 

  • Johnson RE, Washington MT, Prakash S, Prakash L (2000c) Fidelity of human DNA polymerase eta. J Biol Chem 275(11):7447–7450

    PubMed  CAS  Google Scholar 

  • Kannouche P, de Henestrosa ARF, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR (2002) Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 21(22):6246–6256

    PubMed  CAS  Google Scholar 

  • Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14(4):491–500

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H (2012) Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7. J Biol Chem 287:33847–33852. doi:10.1074/jbc.M112.396838, M112.396838 [pii]

    PubMed  CAS  Google Scholar 

  • Krishna TSR, Kong X-P, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79(7):1233–1243

    PubMed  CAS  Google Scholar 

  • Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst) 1(6):425–435

    CAS  Google Scholar 

  • Lawrence CW (2004) Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 69:167–203

    PubMed  CAS  Google Scholar 

  • Lee GH, Matsushita H (2005) Genetic linkage between Polt deficiency and increased susceptibility to lung tumors in mice. Cancer Sci 96(5):256–259. doi:10.1111/j.1349-7006.2005.00042.x

    PubMed  CAS  Google Scholar 

  • Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 6(7):891–899. doi:10.1016/j.dnarep.2007.02.003

    PubMed  CAS  Google Scholar 

  • Lemontt JF (1971) Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68(1):21–33

    PubMed  CAS  Google Scholar 

  • Livneh Z, Ziv O, Shachar S (2010) Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle 9(4):729–735. doi:10.4161/cc.9.4.10727

    PubMed  CAS  Google Scholar 

  • Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwall AK (2007) Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25(4):601–614

    PubMed  CAS  Google Scholar 

  • Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116(15):3051–3060

    PubMed  CAS  Google Scholar 

  • Masuda Y, Kamiya K (2002) Biochemical properties of the human REV1 protein. FEBS Lett 520(1–3):88–92

    PubMed  CAS  Google Scholar 

  • Masuda Y, Takahashi M, Fukuda S, Sumii M, Kamiya K (2002) Mechanisms of dCMP transferase reactions catalyzed by mouse Rev1 protein. J Biol Chem 277(4):3040–3046

    PubMed  CAS  Google Scholar 

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399(6737):700–704

    PubMed  CAS  Google Scholar 

  • Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA (2000) Low fidelity DNA synthesis by human DNA polymerase-eta. Nature 404(6781):1011–1013

    PubMed  CAS  Google Scholar 

  • McDonald JP, Levine AS, Woodgate R (1997) The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147(4):1557–1568

    PubMed  CAS  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679. doi:10.1016/j.cell.2007.05.003

    PubMed  CAS  Google Scholar 

  • Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276(38):35644–35651. doi:10.1074/jbc.M102051200

    PubMed  CAS  Google Scholar 

  • Murakumo Y, Mizutani S, Yamaguchi M, Ichihara M, Takahashi M (2006) Analyses of ultraviolet-induced focus formation of hREV1 protein. Genes Cells 11(3):193–205

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK (2004) Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature 430(6997):377–380

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005a) Human DNA polymerase iota incorporates dCTP opposite template G via a G.C plus Hoogsteen base pair. Structure 13(10):1569–1577

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005b) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309(5744):2219–2222

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2006) Hoogsteen base pair formation promotes synthesis opposite the 1, N6-ethenodeoxyadenosine lesion by human DNA polymerase iota. Nat Struct Mol Biol 13(7):619–625

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2008) Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast rev1 DNA polymerase. Structure 16(2):239–245

    PubMed  CAS  Google Scholar 

  • Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2011) DNA synthesis across an abasic lesion by yeast Rev1 DNA polymerase. J Mol Biol 406(1):18–28. doi:10.1016/j.jmb.2010.12.016

    PubMed  CAS  Google Scholar 

  • Naryzhny SN (2008) Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci 65(23):3789–3808. doi:10.1007/s00018-008-8305-x

    PubMed  CAS  Google Scholar 

  • Nelson JR, Gibbs PE, Nowicka AM, Hinkle DC, Lawrence CW (2000) Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol Microbiol 37(3):549–554, mmi1997 [pii]

    PubMed  CAS  Google Scholar 

  • Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo a pyrene. Proc Natl Acad Sci USA 99(24):15548–15553. doi:10.1073/pnas.222377899

    PubMed  CAS  Google Scholar 

  • Ohashi E, Bebenek K, Matsuda T, Feaver WJ, Gerlach VL, Friedberg EC, Ohmori H, Kunkel TA (2000) Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene. J Biol Chem 275(50):39678–39684

    PubMed  CAS  Google Scholar 

  • Ohashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, Hanaoka F, Ohmori H (2004) Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9(6):523–531

    PubMed  CAS  Google Scholar 

  • Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H (2009) Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function. Genes Cells 14(2):101–111

    PubMed  CAS  Google Scholar 

  • Ohmori H, Friedberg EC, Fuchs RPP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang ZG, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8(1):7–8. doi:10.1016/s1097-2765(01)00278-7

    PubMed  CAS  Google Scholar 

  • Ohmori H, Hanafusa T, Ohashi E, Vaziri C (2009) Separate roles of structured and unstructured regions of Y-family DNA polymerases. In: McPherson A (ed) Advances in protein chemistry and structural biology, vol 78. pp 99–146. doi:10.1016/s1876-1623(09)78004-0

  • Otsuka C, Kunitomi N, Iwai S, Loakes D, Negishi K (2005) Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo. Mutat Res 578(1–2):79–87

    PubMed  CAS  Google Scholar 

  • Pence MG, Blans P, Zink CN, Hollis T, Fishbein JC, Perrino FW (2009) Lesion bypass of N-2-ethylguanine by human DNA polymerase i. J Biol Chem 284(3):1732–1740

    PubMed  CAS  Google Scholar 

  • Petta TB, Nakajima S, Zlatanou A, Despras E, Couve-Privat S, Ishchenko A, Sarasin A, Yasui A, Kannouche P (2008) Human DNA polymerase iota protects cells against oxidative stress. EMBO J 27(21):2883–2895. doi:10.1038/emboj.2008.210

    PubMed  CAS  Google Scholar 

  • Pozhidaeva A, Pustovalova Y, D’Souza S, Bezsonova I, Walker GC, Korzhnev DM (2012) NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase eta. Biochemistry 51(27):5506–5520. doi:10.1021/bi300566z

    PubMed  CAS  Google Scholar 

  • Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16(15):1872–1883

    PubMed  CAS  Google Scholar 

  • Pryor JM, Washington MT (2011) Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein. DNA Repair 10(11):1138–1144. doi:10.1016/j.dnarep.2011.08.011

    PubMed  CAS  Google Scholar 

  • Roush AA, Suarez M, Friedberg EC, Radman M, Siede W (1998) Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol Gen Genet 257(6):686–692

    PubMed  CAS  Google Scholar 

  • Silverstein TD, Johnson RE, Jain R, Prakash L, Prakash S, Aggarwal AK (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465(7301):1039–1043. doi:10.1038/nature09104

    PubMed  CAS  Google Scholar 

  • Stancel JNK, McDaniel LD, Velasco S, Richardson J, Guo C, Friedberg EC (2009) Polk mutant mice have a spontaneous mutator phenotype. DNA Repair 8(12):1355–1362. doi:10.1016/j.dnarep.2009.09.003

    PubMed  CAS  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425(6954):188–191

    PubMed  CAS  Google Scholar 

  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structure of the human Rev1-DNA-dNTP ternary complex. J Mol Biol 390(4):699–709. doi:10.1016/j.jmb.2009.05.026

    PubMed  CAS  Google Scholar 

  • Tissier A, McDonald JP, Frank EG, Woodgate R (2000) Pol iota, a remarkably error-prone human DNA polymerase. Genes Dev 14(13):1642–1650

    PubMed  CAS  Google Scholar 

  • Tissier A, Kannouche P, Reck MP, Lehmann AR, Fuchs RPP, Cordonnier A (2004) Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REV1 protein. DNA Repair 3(11):1503–1514

    PubMed  CAS  Google Scholar 

  • Tsurimoto T (1999) PCNA binding proteins. Front Biosci 4:d849–d858

    PubMed  CAS  Google Scholar 

  • Tsutakawa SE, Van Wynsberghe AW, Freudenthal BD, Weinacht CP, Gakhar L, Washington MT, Zhuang Z, Tainer JA, Ivanov I (2011) Solution X-ray scattering combined with computational modeling reveals multiple conformations of covalently bound ubiquitin on PCNA. Proc Natl Acad Sci USA 108(43):17672–17677. doi:10.1073/pnas.1110480108

    PubMed  CAS  Google Scholar 

  • Uijon SN, Johnson RE, Edwards TA, Prakash S, Prakash L, Aggarwal AK (2004) Crystal structure of the catalytic core of human DNA polymerase kappa. Structure 12(8):1395–1404

    Google Scholar 

  • Ummat A, Silverstein TD, Jain R, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2012) Human DNA polymerase eta is pre-aligned for dNTP binding and catalysis. J Mol Biol 415(4):627–634. doi:10.1016/j.jmb.2011.11.038

    PubMed  CAS  Google Scholar 

  • Vasquez-Del Carpio R, Silverstein TD, Lone S, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2011) Role of human DNA polymerase kappa in extension opposite from a cis-syn thymine dimer. J Mol Biol 408(2):252–261. doi:10.1016/j.jmb.2011.02.042

    PubMed  CAS  Google Scholar 

  • Vidal AE, Kannouche P, Podust VN, Yang W, Lehmann AR, Woodgate R (2004) Proliferating cell nuclear antigen-dependent coordination of the biological functions of human DNA polymerase iota. J Biol Chem 279(46):48360–48368

    PubMed  CAS  Google Scholar 

  • Washington MT, Johnson RE, Prakash S, Prakash L (1999) Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta. J Biol Chem 274(52):36835–36838

    PubMed  CAS  Google Scholar 

  • Washington MT, Johnson RE, Prakash S, Prakash L (2000) Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc Natl Acad Sci USA 97(7):3094–3099

    PubMed  CAS  Google Scholar 

  • Washington MT, Prakash L, Prakash S (2001) Yeast DNA polymerase eta utilizes an induced-fit mechanism of nucleotide incorporation. Cell 107(7):917–927

    PubMed  CAS  Google Scholar 

  • Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99(4):1910–1914

    PubMed  CAS  Google Scholar 

  • Washington MT, Prakash L, Prakash S (2003) Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase eta. Proc Natl Acad Sci USA 100(21):12093–12098

    PubMed  CAS  Google Scholar 

  • Washington MT, Johnson RE, Prakash L, Prakash S (2004a) Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base. Mol Cell Biol 24(2):936–943

    PubMed  CAS  Google Scholar 

  • Washington MT, Minko IG, Johnson RE, Haracska L, Harris TM, Lloyd RS, Prakash S, Prakash L (2004b) Efficient and error-free replication past a minor-groove N-2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Mol Cell Biol 24(16):6900–6906

    PubMed  CAS  Google Scholar 

  • Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L (2004c) Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 24(13):5687–5693

    PubMed  CAS  Google Scholar 

  • Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23(19):3886–3896

    PubMed  CAS  Google Scholar 

  • Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73(1):134–154. doi:10.1128/mmbr.00034-08

    PubMed  CAS  Google Scholar 

  • Wojtaszek J, Lee CJ, D’Souza S, Minesinger B, Kim H, D’Andrea AD, Walker GC, Zhou P (2012a) Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric Pol zeta and Pol kappa. J Biol Chem 287(40):33836–33846. doi:10.1074/jbc.M112.394841, M112.394841 [pii]

    PubMed  CAS  Google Scholar 

  • Wojtaszek J, Liu J, D’Souza S, Wang S, Xue Y, Walker GC, Zhou P (2012b) Multifaceted recognition of vertebrate Rev1 by translesion polymerases zeta and kappa. J Biol Chem 287(31):26400–26408. doi:10.1074/jbc.M112.380998

    PubMed  CAS  Google Scholar 

  • Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L (2005) Human DNA polymerase iota promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA. Mol Cell Biol 25(19):8748–8754

    PubMed  CAS  Google Scholar 

  • Wood A, Garg P, Burgers PMJ (2007) A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 282(28):20256–20263. doi:10.1074/jbc.M702366200

    PubMed  CAS  Google Scholar 

  • Zhang YB, Yuan FH, Wu XH, Wang ZG (2000) Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 20(19):7099–7108

    PubMed  CAS  Google Scholar 

  • Zhang YB, Wu XH, Guo DY, Rechkoblit O, Wang ZG (2002a) Activities of human DNA polymerase kappa in response to the major benzo[a]pyrene DNA adduct: error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair 1(7):559–569

    PubMed  CAS  Google Scholar 

  • Zhang YB, Wu XH, Rechkoblit O, Geacintov NE, Taylor JS, Wang ZG (2002b) Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion. Nucleic Acids Res 30(7):1630–1638

    PubMed  CAS  Google Scholar 

  • Zhou Y, Wang J, Zhang Y, Wang Z (2010) The catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis. Nucleic Acids Res 38(15):5036–5046. doi:10.1093/nar/gkq225

    PubMed  CAS  Google Scholar 

  • Zhuang ZH, Ai YX (2010) Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. Biochim Biophys Acta 1804(5):1081–1093. doi:10.1016/j.bbapap.2009.06.018

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This article was supported by Award Number GM081433 from the National Institute of General Medical Sciences to M.T.W. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

We thank Christine Kondratick, Maria Spies, Adrian Elcock, and Marc Wold for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Todd Washington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pryor, J.M., Dieckman, L.M., Boehm, E.M., Washington, M.T. (2014). Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_4

Download citation

Publish with us

Policies and ethics