Skip to main content

Conformational Change of Grafted Polymer Chains

  • Chapter
  • First Online:
QCM-D Studies on Polymer Behavior at Interfaces

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Based on the “grafting from” and “grafting to” methods, polymer chains are grafted onto the resonator surfaces. QCM-D is used to investigate the conformational change of grafted chains induced by the variation of external conditions. For the grafted poly(N-isopropylacrylamide) (PNIPAM) chains, the QCM-D studies show that the conformational change of grafted PNIPAM chains induced by the variations of temperature and solvent composition is fundamentally different from that for the free PNIPAM chains in solution and the grafting density plays an important role in the conformational change. For the grafted polyelectrolytes, the chemical oscillation induced periodic collapse and swelling of poly (acrylic acid) brushes and the pH-induced folding of DNA with different grafting densities are discussed in detail with the QCM-D results. The influences of salt concentration and salt type on the conformational change of grafted polyelectrolytes are also discussed in this chapter. The studies demonstrate that QCM-D can provide not only the changes in mass and rigidity of the grafted polymer chains, but also the changes in hydrodynamic thickness, shear viscosity, and shear modulus of the grafted polymer layer, which would give a clear picture on the conformational change of the grafted polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhat RR, Tomlinson MR, Wu T, Genzer J (2006) Surface-grafted polymer gradients: formation, characterization, and applications. Adv Polym Sci 198:51–124

    Google Scholar 

  2. Ionov L, Minko S (2012) Mixed polymer brushes with locking switching. Acs Appl Mater Interfaces 4:483–489

    Article  CAS  Google Scholar 

  3. Moya S, Azzaroni O, Farhan T, Osborne VL, Huck WT (2005) Locking and unlocking of polyelectrolyte brushes: toward the fabrication of chemically controlled nanoactuators. Angew Chem Int Ed 44:4578–4581

    Article  CAS  Google Scholar 

  4. Neuhaus S, Padeste C, Spencer ND (2011) Versatile wettability gradients prepared by chemical modification of polymer brushes on polymer foils. Langmuir 27:6855–6861

    Article  CAS  Google Scholar 

  5. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527

    Article  CAS  Google Scholar 

  6. Zhang GZ, Wu C (2009) Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun 30:328–335

    Article  Google Scholar 

  7. Alexander S (1977) Adsorption of chain molecules with a polar head a-scaling description. J Phys-Paris 38:983–987

    Article  CAS  Google Scholar 

  8. de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Article  Google Scholar 

  9. Milner ST (1991) Polymer brushes. Science 251:905–914

    Article  CAS  Google Scholar 

  10. Halperin A, Tirrell M, Lodge TP (1992) Tethered chains in polymer microstructures. Adv Polym Sci 100:31–71

    Article  CAS  Google Scholar 

  11. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

  12. Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at Interfaces. Chapman & Hall, UK

    Google Scholar 

  13. Rühe J, Ballauff M, Biesalski M, Dziezok P, Grohn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang HN (2004) Polyelectrolyte brushes. Adv Polym Sci 165:79–150

    Article  Google Scholar 

  14. Tagliazucchi M, Szleifer I (2012) Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport. Soft Matter 8:3292–3305

    Article  Google Scholar 

  15. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  16. Dukes D, Li Y, Lewis S, Benicewicz B, Schadler L, Kumar SK (2010) Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43:1564–1570

    Article  CAS  Google Scholar 

  17. Zhang GZ (2004) Study on conformation change of thermally sensitive linear grafted poly (N-isopropylacrylamide) chains by quartz crystal microbalance. Macromolecules 37:6553–6557

    Article  CAS  Google Scholar 

  18. Liu GM, Zhang GZ (2005) Reentrant behavior of poly (N-isopropylacrylamide) brushes in water–methanol mixtures investigated with a quartz crystal microbalance. Langmuir 21:2086–2090

    Article  CAS  Google Scholar 

  19. Liu GM, Zhang GZ (2005) Collapse and swelling of thermally sensitive poly (N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance. J Phys Chem B 109:743–747

    Article  CAS  Google Scholar 

  20. Cheng H, Liu GM, Wang CQ, Zhang GZ, Wu C (2006) Collapse and swelling of poly (N-isopropylacrylamide-co-sodium acrylate) copolymer brushes grafted on a flat SiO2 surface. J Polym Sci Polym Phys 44:770–778

    Article  CAS  Google Scholar 

  21. Liu GM, Zhang GZ (2008) Periodic swelling and collapse of polyelectrolyte brushes driven by chemical oscillation. J Phys Chem B 112:10137–10141

    Article  CAS  Google Scholar 

  22. Xia HW, Hou Y, Ngai T, Zhang GZ (2010) pH induced DNA folding at interface. J Phys Chem B 114:775–779

    Article  CAS  Google Scholar 

  23. Hou Y, Liu GM, Wu Y, Zhang GZ (2011) Reentrant behavior of grafted poly (sodium styrenesulfonate) chains investigated with a quartz crystal microbalance. Phys Chem Chem Phys 13:2880–2886

    Article  CAS  Google Scholar 

  24. Wang XW, Liu GM, Zhang GZ (2011) Conformational behavior of grafted weak polyelectrolyte chains: effects of counterion condensation and nonelectrostatic anion adsorption. Langmuir 27:9895–9901

    Article  CAS  Google Scholar 

  25. Schild HG (1992) Poly (N-isopropylacrylamide)-experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  26. Wu C, Zhou SQ (1995) Laser-light scattering study of the phase-transition of poly (N-isopropylacrylamide) in water. 1 Single-chain. Macromolecules 28:8381–8387

    Article  CAS  Google Scholar 

  27. Grest GS, Murat M (1994) Monte carlo and molecular dynamics simulations in polymer science. In: Binder K (ed). Clarendon, Oxford

    Google Scholar 

  28. Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T (1994) Dynamic contact-angle measurement of temperature-responsive surface-properties for poly (N-Isopropylacrylamide) grafted surfaces. Macromolecules 27:6163–6166

    Article  CAS  Google Scholar 

  29. Zhang J, Pelton R, Deng YL (1995) Temperature-dependent contact angles of water on poly (N-isopropylacrylamide) gels. Langmuir 11:2301–2302

    Article  CAS  Google Scholar 

  30. Balamurugan S, Mendez S, Balamurugan SS, O’Brien MJ, Lopez GP (2003) Thermal response of poly (N-isopropylacrylamide) brushes probed by surface plasmon resonance. Langmuir 19:2545–2549

    Article  CAS  Google Scholar 

  31. Minko S (2008) Polymer surfaces and interfaces. In: Stamm M. (ed). Springer, Berlin

    Google Scholar 

  32. Sauerbrey G (1959) Verwendung von svhwingquarzen zur wägung dünner schichten und zur mikrowägung. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  33. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396

    Article  CAS  Google Scholar 

  34. Wu C, Zhou SQ (1995) Thermodynamically stable globule state of a single poly (N-isopropylacrylamide) chain in water. Macromolecules 28:5388–5390

    Article  CAS  Google Scholar 

  35. Winnik FM, Ringsdorf H, Venzmer J (1990) Methanol water as a co-nonsolvent system for poly (N-isopropylacrylamide). Macromolecules 23:2415–2416

    Article  CAS  Google Scholar 

  36. Amiya T, Hirokawa Y, Hirose Y, Li Y, Tanaka T (1987) Reentrant phase-transition of N-isopropylacrylamide gels in mixed-solvents. J Chem Phys 86:2375–2379

    Article  CAS  Google Scholar 

  37. Zhang GZ, Wu C (2001) The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J Am Chem Soc 123:1376–1380

    Article  CAS  Google Scholar 

  38. Tanaka F, Koga T, Winnik FM (2008) Temperature-responsive polymers in mixed solvents: competitive hydrogen bonds cause cononsolvency. Phys Rev Lett 101:028302

    Article  Google Scholar 

  39. Auroy P, Auvray L (1992) Collapse-stretching transition for polymer brushes-preferential solvation. Macromolecules 25:4134–4141

    Article  CAS  Google Scholar 

  40. Forster S, Schmidt M (1995) Polyelectrolytes in solution. Adv Polym Sci 120:51–133

    Article  Google Scholar 

  41. Zhou F, Hu HY, Yu B, Osborne VL, Huck WTS, Liu WM (2007) Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy. Anal Chem 79:176–182

    Article  CAS  Google Scholar 

  42. Schuwer N, Klok HA (2011) Tuning the pH sensitivity of poly (methacrylic acid) brushes. Langmuir 27:4789–4796

    Article  CAS  Google Scholar 

  43. Gebhardt JE, Fuerstenau DW (1983) Adsorption of polyacrylic-acid at oxide water interfaces. Colloid Surf 7:221–231

    Article  CAS  Google Scholar 

  44. Williamson DH, Denny PW, Moore PW, Sato S, McCready S, Wilson RJM (2001) The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication. J Mol Biol 306:159–168

    Article  CAS  Google Scholar 

  45. Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struc Biol 10:326–331

    Article  CAS  Google Scholar 

  46. Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284–299

    Article  CAS  Google Scholar 

  47. Hsiao PY, Luijten E (2006) Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys Rev Lett 97:148301

    Article  Google Scholar 

  48. Grosberg AY, Nguyen TT, Shklovskii BI (2002) Colloquium: the physics of charge inversion in chemical and biological systems. Rev Mod Phys 74:329–345

    Article  CAS  Google Scholar 

  49. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  Google Scholar 

  50. Manning GS (2007) Counterion condensation on charged spheres, cylinders, and planes. J Phys Chem B 111:8554–8559

    Article  CAS  Google Scholar 

  51. Bostrom M, Williams DRM, Ninham BW (2002) The influence of ionic dispersion potentials on counterion condensation on polyelectrolytes. J Phys Chem B 106:7908–7912

    Article  Google Scholar 

  52. Satoh M, Kawashima T, Komiyama J (1991) Competitive counterion binding and dehydration of polyelectrolytes in aqueous-solutions. Polymer 32:892–896

    Article  CAS  Google Scholar 

  53. An SW, Thomas RK (1997) Determination of surface pKa by the combination of neutron reflection and surface tension measurements. Langmuir 13:6881–6883

    Article  CAS  Google Scholar 

  54. Maison W, Kennedy RJ, Kemp DS (2001) Chaotropic anions strongly stabilize short, N-capped uncharged peptide helicies: a new look at the perchlorate effect. Angew Chem Int Ed 40:3819–3821

    Article  CAS  Google Scholar 

  55. Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Liu, G., Zhang, G. (2013). Conformational Change of Grafted Polymer Chains. In: QCM-D Studies on Polymer Behavior at Interfaces. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39790-5_2

Download citation

Publish with us

Policies and ethics