Skip to main content

Dynamical Resonances in F + H2 Reactions

  • Chapter
  • First Online:
  • 411 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

F + H2 reaction first attracted attention due to the application of chemical laser. This is the first reaction which has product vibrational state resolved measurements. Using chemical laser and infrared light emitting, researchers found that the population of the product HF vibrational states is highly inverted. Crossed molecular beam studies of this system are the main work of Yuan Tseh Lee’s Nobel Prize in Chemistry in 1986. In this chapter, studies on resonance phenomenon in the F + H2 reaction are mainly described. In Sect. 3.1, studies on resonance in the F + H2 reaction are reviewed; crossed molecular beam studies in the F(2P2/3) + H2 → HF + H reaction are introduced in Sects. 3.2 and 3.3 discusses the studies of the F(2P2/3) + HD → HF + H reaction, and the last section is a summary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Althorpe SC, Clary DC (2003) Quantum scattering calculations on chemical reactions. Annu Rev Phys Chem 54:493–529

    Article  CAS  Google Scholar 

  2. Aoiz FJ, Banares L, Herrero VJ (1998) Recent results from quasiclassical trajectory computations of elementary chemical reactions. J Chem Soc-Faraday Trans 94:2483–2500

    Article  CAS  Google Scholar 

  3. Aoiz FJ, Banares L, Herrero VJ et al (1994) Classical dynamics for the F + H2 → HF + H reaction on a new ab initio potential energy surface. A direct comparison with experiment. Chem Phys Lett 223:215–226

    Article  CAS  Google Scholar 

  4. Aquilanti V, Cavalli S, De Fazio D et al (2002) Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F + H2, including long-range and spin orbit effects. Phys Chem Chem Phys 4:401–415

    Article  CAS  Google Scholar 

  5. Castillo JF, Manolopoulos DE, Stark K et al (1996) Quantum mechanical angular distributions for the F + H2 reaction. J Chem Phys 104:6531–6546

    Article  CAS  Google Scholar 

  6. Che L (2008) thesis: studies on non-adiabatic effect and reaction resonance in the reaction F(2P) + H2/HD/D2. Institute of Chemical Physics, CAS. Dalian China

    Google Scholar 

  7. Dong F, Lee SH, Liu K (2000) Reactive excitation functions for F + p-H2/n-H2/D2 and the vibrational branching for F + HD. J Chem Phys 113:3633–3640

    Article  CAS  Google Scholar 

  8. Hayes M, Gustafsson M, Mebel AM et al (2005) An improved potential energy surface for the F + H2 reaction. Chem Phys 308:259–266

    Article  CAS  Google Scholar 

  9. Hu QJ, Hepburn JW (2006) Energetics and dynamics of threshold photoion-pair formation in HF/DF. J Chem Phys 124:74311

    Article  CAS  Google Scholar 

  10. Lee SH, Dong F, Liu KP (2006) A crossed-beam study of the F + HD → HF + D reaction: the resonance-mediated channel. J Chem Phys 125:133106

    Article  Google Scholar 

  11. Lee SH, Dong F, Liu KP (2002) Reaction dynamics of F + HD → HF + D at low energies: resonant tunneling mechanism. J Chem Phys 116:7839–7848

    Article  CAS  Google Scholar 

  12. Lee YT (1986) Molecular beam studies of elementary chemical processes. Nobel Lecture

    Google Scholar 

  13. Lee YT (1987) Molecular beam studies of elementary chemical processes. Science 236(4803):793–798

    Article  CAS  Google Scholar 

  14. Mann DE, Thrush BA, Lide JDR et al (1961) Spectroscopy of fluorine flames. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF. J Chem Phys 34:420–431

    Article  CAS  Google Scholar 

  15. Manolopoulos DE (1997) The dynamics of the F + H2 reaction. J Chem Soc-Faraday Trans 93:673–683

    Article  CAS  Google Scholar 

  16. Manolopoulos DE, Stark K, Werner HJ et al (1993) The transition-state of the F + H2 reaction. Science 262:1852–1855

    Article  CAS  Google Scholar 

  17. Neumark DM, Wodtke AM, Robinson GN et al (1984) Experimental investigation of resonances in reactive scattering: The F + H2 reaction. Phys Rev Lett 53:226

    Article  CAS  Google Scholar 

  18. Neumark DM, Wodtke AM, Robinson GN et al (1985) Molecular beam studies of the F + H2 reaction. J Chem Phys 82:3045–3066

    Article  CAS  Google Scholar 

  19. Neumark DM, Wodtke AM, Robinson GN et al (1985) Molecular beam studies of the F + D2 and F + HD reactions. J Chem Phys 82:3067–3077

    Article  CAS  Google Scholar 

  20. Parker JH, Pimentel GC (1969) Vibrational energy distribution through chemical laser studies. I. Fluorine atoms plus hydrogen or methane. J Chem Phys 51:91–96

    Article  CAS  Google Scholar 

  21. Polanyi JC, Tardy DC (1969) Energy distribution in the exothermic reaction F + H2 and the endothermic reaction HF + H. J Chem Phys 51:5717–5719

    Article  CAS  Google Scholar 

  22. Polanyi JC, Woodall KB (1972) Energy distribution among reaction products. VI. F + H2, D2. J Chem Phys 57:1574–1586

    Article  CAS  Google Scholar 

  23. Qiu M (2006) thesis: High resolution crossed molecular beams study on the F + H2 reaction. Dalian Institute of Chemical Physics, CAS. Dalian, China

    Google Scholar 

  24. Qiu M, Ren Z, Che L et al (2006) Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311:1440–1443

    Article  CAS  Google Scholar 

  25. Ren Z, Che L, Qiu M et al (2008) Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy. Proc Natl Acad Sci USA 105:12662–12666

    Article  CAS  Google Scholar 

  26. Ren ZF, Che L, Qiu MH et al (2006) Probing Feshbach resonances in F + H-2(j = 1) → HF + H: Dynamical effect of single quantum H2-rotation. J Chem Phys 125

    Google Scholar 

  27. Ren ZF, Qiu MH, Che L et al (2006) A double-stage pulsed discharge fluorine atom beam source. Rev Sci Instrum 77:016102

    Article  Google Scholar 

  28. Schatz GC, Bowman JM, Kuppermann A (1973) Large quantum effects in the collinear F + H2 → FH + H reaction. J Chem Phys 58:4023–4025

    Article  CAS  Google Scholar 

  29. Skodje RT, Skouteris D, Manolopoulos DE et al (2000) Resonance-mediated chemical reaction: F + HD → HF + D. Phys Rev Lett 85:1206

    Article  CAS  Google Scholar 

  30. Skodje RT, Skouteris D, Manolopoulos DE et al (2000) Observation of a transition state resonance in the integral cross section of the F + HD reaction. J Chem Phys 112:4536–4552

    Article  CAS  Google Scholar 

  31. Stark K, Werner HJ (1996) An accurate multireference configuration interaction calculation of the potential energy surface for the F + H2 → HF + H reaction. J Chem Phys 104:6515–6530

    Article  CAS  Google Scholar 

  32. Stoicheff BP (2001) On the dissociation energy of molecular hydrogen. Can J Phys 79:165–172

    Article  CAS  Google Scholar 

  33. Takayanagi T (2006) The effect of van der Waals resonances on reactive cross sections for the F + HD reaction. Chem Phys Lett 433:15–18

    Article  CAS  Google Scholar 

  34. Wang XG, Dong WR, Qiu MH et al (2008) HF(v′ = 3) forward scattering in the F + H2 reaction: Shape resonance and slow-down mechanism. Proc Natl Acad Sci USA 105:6227–6231

    Article  CAS  Google Scholar 

  35. Wu S-F, Johnson BR, Levine RD (1973) Quantum mechanical computational studies of chemical reactions: III. Collinear A BC reaction with some model potential energy surfaces. Mol Phys 25:839–856

    Article  CAS  Google Scholar 

  36. Xu CX, Xie DQ, Zhang DH (2006) A global ab initio potential energy surface for F + H2 → HF + H. Chin J Chem Phys 19:96–98

    Article  CAS  Google Scholar 

  37. Yang XF, Hwang DW, Lin JJ et al (2000) Dissociation dynamics of the water molecule on the (A)over-tilde B-1(1) electronic surface. J Chem Phys 113:10597–10604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z. (2014). Dynamical Resonances in F + H2 Reactions. In: State-to-State Dynamical Research in the F+H2 Reaction System. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39756-1_3

Download citation

Publish with us

Policies and ethics