Skip to main content

Introduction

  • Chapter
  • First Online:
  • 396 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The nature of chemical reactions is the breaking of old bonds and the formation of new bonds. Molecular reaction dynamics is the study on how the old bonds are broken and how the new bonds are formed. In the past few decades, molecular reaction dynamics is an important field of physical chemistry and chemical physics. Its main task is to study elementary chemical reaction processes on the atomic scale and femtosecond (even attosecond) time scale. The in-depth study of this field offers important knowledge to atmospheric chemistry, interstellar chemistry, as well as combustion chemistry, and deepens our understanding of the essential nature of chemical reactions in nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee YT (1986) Molecular beam studies of elementary chemical processes. In: Nobel Lecture

    Google Scholar 

  2. Zewail AH (1999) Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers. In: Nobel lecture

    Google Scholar 

  3. Yang X, Liu K (eds) (2004) Modern trends in chemical reaction dynamics: Experiment and theory. World Scientific Singapore, Singapore

    Google Scholar 

  4. Fernandez-Alonso F, Zare RN (2002) Scattering resonances in the simplest chemical reaction. Annu Rev Phys Chem 53:67–99

    Article  CAS  Google Scholar 

  5. Truhlar DG, Kuppermann A (1972) Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction. J Chem Phys 56:2232–2252

    Article  CAS  Google Scholar 

  6. Truhlar DG, Kuppermann A (1970) Quantum mechanics of the H + H2 reaction: exact scattering probabilities for collinear collisions. J Chem Phys 52:3841–3843

    Article  CAS  Google Scholar 

  7. Dai DX, Wang CC, Harich SA et al (2003) Interference of quantized transition-state pathways in the H + D2 → D + HD chemical reaction. Science 300:1730–1734

    Article  CAS  Google Scholar 

  8. Harich SA, Dai DX, Wang CC et al (2002) Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction. Nature 419:281–284

    Article  CAS  Google Scholar 

  9. Friedman RS, Truhlar DG (1991) Chemical reaction thresholds are resonances Chem Phys Lett 183:539–546

    Article  CAS  Google Scholar 

  10. Schatz GC (2000) Reaction dynamics: detecting resonances. Science 288:1599–1600

    Article  CAS  Google Scholar 

  11. Liu KP (2001) Crossed-beam studies of neutral reactions: state-specific differential cross sections. Annu Rev Phys Chem 52:139–164

    Article  CAS  Google Scholar 

  12. Child MS (1974) Molecular collision theory. Academic Press, London & New York

    Google Scholar 

  13. Kim SK, Lovejoy ER, Moore CB (1995) Transition-state vibrational level thresholds for the dissociation of triplet ketene. J Chem Phys 102:3202–3219

    Article  CAS  Google Scholar 

  14. Neumark DM, Wodtke AM, Robinson GN et al (1985) Molecular beam studies of the F + H2 reaction. J Chem Phys 82:3045–3066

    Article  CAS  Google Scholar 

  15. Wang XG, Dong WR, Qiu MH et al (2008) HF (v ‘= 3) forward scattering in the F + H2 reaction: shape resonance and slow-down mechanism. Proc Natl Acad Sci USA 105:6227–6231

    Article  CAS  Google Scholar 

  16. Butler LJ (1998) Chemical reaction dynamics beyond the Born-Oppenheimer approximation. Annu Rev Phys Chem 49:125–171

    Article  CAS  Google Scholar 

  17. Closs GL, Miller JR (1988) Intramolecular long-distance electron transfer in organic molecules. Science 240:440–447

    Article  CAS  Google Scholar 

  18. Gergen B, Nienhaus H, Weinberg WH et al (2001) Chemically induced electronic excitations at metal surfaces. Science 294:2521–2523

    Article  CAS  Google Scholar 

  19. White JD, Chen J, Matsiev D et al (2005) Conversion of large-amplitude vibration to electron excitation at a metal surface. Nature 433:503–505

    Article  CAS  Google Scholar 

  20. Frischkorn C, Wolf M (2006) Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem Rev 106:4207–4233

    Article  CAS  Google Scholar 

  21. Wodtke AM (2006) Chemistry in a computer: advancing the in silico dream. Science 312:64–65

    Article  CAS  Google Scholar 

  22. Polanyi JC, Zewail AH (1995) Direct observation of the transition-state. Acc Chem Res 28:119–132

    Article  CAS  Google Scholar 

  23. Yang XM, Zhang DH (2008) Dynamical resonances in the fluorine atom reaction with the hydrogen molecule. Acc Chem Res 41:981–989

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefeng Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z. (2014). Introduction. In: State-to-State Dynamical Research in the F+H2 Reaction System. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39756-1_1

Download citation

Publish with us

Policies and ethics