Skip to main content

Use and Perspectives of Fuzzy Cognitive Maps in Robotics

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 54))

Abstract

Fuzzy Cognitive Maps (FCM) started in the last decade to penetrate to areas as decision-making and control systems including robotics, which is characterized by its distributiveness, need for parallelism and heterogeneity of used means. This chapter deals with specification of needs for a robot control system and divides defined tasks into three basic decision levels dependent on their specification of use as well as applied means. Concretely, examples of several FCMs applications from the low and middle decision levels are described, mainly in the area of navigation, movement stabilization, action selection and path cost evaluation. Finally, some outlooks for future development of FCMs are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beeson, P., Modayil, J., Kuipers, B.: Factoring the mapping problem: mobile robot map-building in the hybrid spatial semantic hierarchy. Int. J. Robot. Res. 29(4), 428–459 (2010)

    Article  Google Scholar 

  2. Blažič, S., Škrjanc, I., Matko, D.: Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets Syst. 139(1), 3–33 (2003)

    Article  MATH  Google Scholar 

  3. Golmohammadi, S.K., Azadeh, A., Gharehgozli, A.: Action selection in robots based on learning fuzzy cognitive map, pp. 731–736. In: Proceeding of IEEE International Conference on Industrial Informatics, Singapore (2006)

    Google Scholar 

  4. Kannappan, A., Tamilarasi, A., Papageorgiou, E.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst. Appl. 38(3), 1282–1292 (2011)

    Article  Google Scholar 

  5. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  6. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge. http://planning.cs.uiuc.edu/ (2006)

  7. Matarić, M.J.: Learning in behavior-based multi-robot systems: policies, models, and other agents. Cogn. Syst. Res. 2(1), 81–93 (2001)

    Article  Google Scholar 

  8. Medgyes, K., Johanyák, Z.C.: Survey on routing algorithms. In: Proceeding of 3rd International Scientific and Expert Conference (TEAM 2011), Trnava, Slovakia, pp. 312–315 (2012)

    Google Scholar 

  9. Mendonça, M., de Arruda, L., Neves, F.: Autonomous navigation system using event driven-fuzzy cognitive maps. Appl. Intel. 37, 175–188 (2012)

    Article  Google Scholar 

  10. Motlagh, O.: An FCM-based design for balancing of legged robots. J. Artif.Intel. 4(4), 295–299 (2011)

    Article  Google Scholar 

  11. Motlagh, O., Tang, S.H., Ismail, N., Ramli, A.R.: An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets Syst. 201, 105–121 (2012)

    Article  MathSciNet  Google Scholar 

  12. Papageorgiou, E.: Learning algorithms for fuzzy cognitive maps:a review study. Syst. Man Cybern. Part C Appl. Rev. IEEE Trans. 42(2), 150–163 (2012)

    Article  Google Scholar 

  13. Papageorgiou, E.I., Froelich, W.: Multi-step prediction of pulmonary infection with the use of evolutionary fuzzy cognitive maps. Neurocomputing 92, 28–35 (2012)

    Article  Google Scholar 

  14. Papageorgiou, E.I., Iakovidis, D.K.: Intuitionistic fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. 21(2), 342–354 (2013)

    Google Scholar 

  15. Papageorgiou, E.I., Kannappan, A.: Fuzzy cognitive map ensemble learning paradigm to solve classification problems: application to autism identification. Appl. Soft Comput. 12(12), 3798–3809 (2012)

    Article  Google Scholar 

  16. Papageorgiou, E.I., Salmeron, J.L.: Learning fuzzy grey cognitive maps using nonlinear hebbian-based approach. Int. J. Approx. Reason. 53(1), 54–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)

    Google Scholar 

  18. Parenthoën, M., Reignier, P., Tisseau, J.: Put fuzzy cognitive maps to work in virtual worlds. In: Proceeding of the 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), vol. 1, pp. 252–255, Melbourne, Australia (2001)

    Google Scholar 

  19. Pozna, C., Troester, F., Precup, R.E., Tar, J.K., Preitl, S.: On the design of an obstacle avoiding trajectory: method and simulation. Math. Comput. Simul. 79(7), 2211–2226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Precup, R.E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)

    Article  Google Scholar 

  21. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Google Scholar 

  22. Vaščák, J.: Fuzzy cognitive maps in path planning. Acta Tech. Jaurinensis 1(3), 467–479 (2008)

    Google Scholar 

  23. Vaščák, J.: Decision-making systems in mobile robotics. In: Mls, K. (ed.) Autonomous Decision Systems Handbook, pp. 56–88. BEN, Prague (2011)

    Google Scholar 

  24. Vaščák, J., Hirota, K.: Integrated decision-making system for robot soccer. J. Adv. Comput. Intel. Intel. Inf. 15(2), 156–163 (2011)

    Google Scholar 

  25. Vaščák, J., Madarász, L.: Adaptation of fuzzy cognitive maps—a comparison study. Acta Polytech. Hung. 7(3), 109–122 (2010)

    Google Scholar 

  26. Vaščák, J., Paľa ,M.: Adaptation of fuzzy cognitive maps for navigation purposes by migration algorithms. Int. J. Artif. Intel. 8(S12), 20–37 (2012)

    Google Scholar 

  27. Zelinka, I.: Artificial Intelligence in Problems of Global Optimization. BEN, Prague (2002)

    Google Scholar 

Download references

Acknowledgments

Research supported by the National Research and Development Project Grant 1/0667/12 “Incremental Learning Methods for Intelligent Systems” 2012–2015 and by the “Center of Competence of knowledge technologies for product system innovation in industry and service” with ITMS project number: 26220220155 for years 20012–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Vaščák .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 25,594 KB)

Supplementary material 1 (AVI 28,004 KB)

Supplementary material 1 (AVI 28,863 KB)

Supplementary material 1 (AVI 11,397 KB)

Supplementary material 1 (PDF 227 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaščák, J., Reyes, N.H. (2014). Use and Perspectives of Fuzzy Cognitive Maps in Robotics. In: Papageorgiou, E. (eds) Fuzzy Cognitive Maps for Applied Sciences and Engineering. Intelligent Systems Reference Library, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39739-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39739-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39738-7

  • Online ISBN: 978-3-642-39739-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics