Skip to main content

A Study on Multi-label Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7987))

Abstract

Multi-label classifications exist in many real world applications. This paper empirically studies the performance of a variety of multi-label classification algorithms. Some of them are developed based on problem transformation. Some of them are developed based on adaption. Our experimental results show that the adaptive Multi-Label K-Nearest Neighbor performs the best, followed by Random k-Label Set, followed by Classifier Chain and Binary Relevance. Adaboost.MH performs the worst, followed by Pruned Problem Transformation. Our experimental results also provide us the confidence of existing correlations among multi-labels. These insights shed light for future research directions on multi-label classifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer (2010)

    Google Scholar 

  2. Klimt, B., Yang, Y.: Introducing the Enron corpus. In: First Conference on Email and Anti-Spam, CEAS (2004)

    Google Scholar 

  3. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  Google Scholar 

  4. Tsoumakas, G., Ioannis, K.: Multi-label Classification: An Overview. International Journal of Data Warehousing and Mining (2007)

    Google Scholar 

  5. Min-Ling, Z., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  6. Arunadevi, J., Rajamani, V.: An Evolutionary Multi Label Classification Using Associative Rule Mining. International Journal of Soft Computing 6(2), 20–25 (2011)

    Article  Google Scholar 

  7. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  8. Yu-Yin, S., Zhang, Y., Zhi-Hua, Z.: Multi-label learning with weak label. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  9. Alvares, C.E., Monard, M.C., Metz, J.: Multi-label Problem Transformation Methods: A Case Study. CLEI Electronic Journal 14(1), 4 (2011)

    Google Scholar 

  10. Tsoumakas, G., et al.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research 1, 1–48 (2010)

    Google Scholar 

  11. Tao, L., Zhang, C., Zhu, S.: Empirical studies on multi-label classification. In: The Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006 (2006)

    Google Scholar 

  12. Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.): ICIC 2010. CCIS, vol. 93. Springer, Heidelberg (2010)

    Google Scholar 

  13. Colin, C., Mohammad, S.M., de Bruijn, B.: Binary classifiers and latent sequence models for emotion detection in suicide notes. Biomedical Informatics Insights 5(suppl. 1), 147 (2012)

    Google Scholar 

  14. Jesse, R.: A pruned problem transformation method for multi-label classification. In: Proc. 2008 New Zealand Computer Science Research Student Conference, NZCSRS 2008 (2008)

    Google Scholar 

  15. Yoav, F., Schapire, R., Abe, N.: A short introduction to boosting. Journal-Japanese Society for Artificial Intelligence 14, 771–780 (1999): 1612

    Google Scholar 

  16. Min-Ling, Z., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2010)

    Google Scholar 

  17. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  18. Tsoumakas, G., Zhang, M.-L., Zhou, Z.-H.: Tutorial on learning from multi-label data. In: ECML/PKDD 2009, Bled, Slovenia (2009), http://www.ecmlpkdd2009.net/wp-content/uploads/2009/08/learningfrom-multi-label-data.pdf

  19. Kumar, V., Wu, X.: Adaboost, The top ten algorithms in data mining, ch. 7, pp. 127–144. CRC Press (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tawiah, C.A., Sheng, V.S. (2013). A Study on Multi-label Classification. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2013. Lecture Notes in Computer Science(), vol 7987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39736-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39736-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39735-6

  • Online ISBN: 978-3-642-39736-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics