Skip to main content

Relevance as a Metric for Evaluating Machine Learning Algorithms

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2013)

Abstract

In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the concerns of users in the application domain under consideration. In this paper, we propose a novel probability-based performance metric called Relevance Score for evaluating supervised learning algorithms. We evaluate the proposed metric through empirical analysis on a dataset gathered from an intelligent lighting pilot installation. In comparison to the commonly used Classification Accuracy metric, the Relevance Score proves to be more appropriate for a certain class of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gopalakrishna, A.K., Ozcelebi, T., Liotta, A., Lukkien, J.J.: Exploiting Machine Learning for Intelligent Room Lighting Applications. In: The 6th International Conference on Intelligent Systems, Sofia, pp. 406–411 (2012)

    Google Scholar 

  2. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Aly, M.: Survey of Multiclass Classification Methods. Technical Report, California Institute of Technology (2005)

    Google Scholar 

  4. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, ch. 1, pp. 21–26 (2005)

    Google Scholar 

  5. Tsoumakas, G., Katakis, I.: Multi-Label Classification: An Overview. J. Data Warehousing and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  6. McCallum, A.K.: Multi-label Text Classification with a Mixture Model trained by EM. In: AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

  7. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-Label Classification of Music into Emotions. In: Proceedings of The International Society for Music Information Retrieval, pp. 325–330 (2008)

    Google Scholar 

  8. Japkowicz, N.: Why question machine learning evaluation methods? In: AAAI 2006 Workshop on Evaluation Methods for Machine Learning, pp. 6–11 (2006)

    Google Scholar 

  9. Jain, R.: The Art of Computer System Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling. John Wiley (1991)

    Google Scholar 

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  11. Kohavi, R.: The Power of Decision Tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Cohen, W.H.: Fast Effective Rule Induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

    Google Scholar 

  13. Martin, B.: Instance-based Learning: Nearest Neighbor with Generalization. Technical Report, University of Waikato (1995)

    Google Scholar 

  14. Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151 (1998)

    Google Scholar 

  15. Clarke, P., Niblett, T.: The CN2 Rule Induction Algorithm. In: Machine Learning, pp. 261–283 (1989)

    Google Scholar 

  16. Gaines, B.R., Compton, P.: Induction of ripple-down rules applied to modeling large databases. Journal of Intelligent Information Systems 5(3), 211–228 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalakrishna, A.K., Ozcelebi, T., Liotta, A., Lukkien, J.J. (2013). Relevance as a Metric for Evaluating Machine Learning Algorithms. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39712-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39711-0

  • Online ISBN: 978-3-642-39712-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics