Skip to main content

Konsequenzen der modernen Germaniumchemie

  • Chapter
  • First Online:
Strategische Rohstoffe — Risikovorsorge

Zusammenfassung

Am 6. Februar 2011 jährte sich die Entdeckung des Elementes Germanium zum 125. Mal, ein Ereignis, dessen in Freiberg (Sachsen) durchaus mit einem gewissen Stolz gedacht wurde. Es war ein Chemiker der TU Bergakademie, Clemens Winkler, dem es gelang, in einer Mineralprobe von Argyrodit aus der Grube St. Michaelis eben dieses Element aufzuspüren, dessen Existenz von Mendelejew als ein Ergeb- nis seiner Forschungen zur Periodizität der chemischen Elemente vorausgesagt und mit dem vorläufigen Namen Eka-Silizium belegt worden war (Ackermann 1987; Haustein 2011; Abb. 16.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellenverzeichnis

  • Ackermann G (1987) Grundstoff-Verfahrenstech-nik und Technische Chemie. Freiberger Forschungsheft A 767, S. 9–16

    Google Scholar 

  • Angerer G, Erdmann L, Marscheider–Weidemann F, Scharp MA, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien, ISI-Schriftenreihe Innovationspotenziale, S. 87–116; 330–340, Fraunhofer IRB Verlag

    Google Scholar 

  • Arroya Torralvo F, Fernández-Pereira C, Companario M (2010) Recovery of Germanium from Aqueous Solutions by Ion-Exchange Extraction of Its Catechol Complex. Ind. Eng. Chem. Res. 49: 4817–4823

    Article  Google Scholar 

  • Asian Metals (2008) 2008 Annual Report on Germanium Market, Asian Metals Ltd.

    Google Scholar 

  • Bugaris DE, zur Loye HC (2012) Auf der Suche nach neuen Materialien: Kristallzucht von quaternären und höherwertigen Oxiden in Flussmitteln. Angew. Chem. 124: 3844–76

    Article  Google Scholar 

  • Bürger D, Zou S, Höwler M, Ou X, Kovacs GJ, Reuther H, Mücklich A, Skorupa W, Helm M, Schmidt H (2012) Hysteretic anomalous Hall effect in a ferromagnetic, Mn-rich Ge:Mn nanonet. Appl. Phys. Lett. 100: 012406

    Google Scholar 

  • Chen MC, Li P, Zhou LJ, Li LH, Chen L (2011) Structure Change Induced by Terminal Sulfur in Noncentrosymmetric La2Ga2GeS8 and Eu2Ga2GeS7 and Nonlinear-Optical Responses in Middle Infrared. Inorg. Chem. 50, 24: 12402–12404

    Article  Google Scholar 

  • Cheng F, Hector AL, Levason W, Reid G, Webster M, Zhang W (2009) Germanium(II) Dications Stabilized by Azamacrocycles and Crown Ethers. Angew. Chem. 121: 5254–5256

    Article  Google Scholar 

  • Doddi A, Gemel C, Winter M, Fischer RA, Goedecke C, Rzepa HS Frenking G (2013) Mit N-heterocy-clischem Gallylen stabilisierte niedervalente Ge2- und Ge4-Spezies. Angew. Chem. 125: 468–72

    Article  Google Scholar 

  • du Mont WW, Gust T, Seppälä E, Wismach C (2004) Dichlorosilylene and dichlorogermylene transfer to alkylidenephosphanes. Journ. Organomet. Chem. 689: 1331–36

    Google Scholar 

  • Erdmann L, Behrendt S, Feil M (2011) Kritische Rohstoffe für Deutschland (Anhang zum Ab-schlussbericht von 30.09.2011, IZT und adelphi, Berlin) S. 79–88

    Google Scholar 

  • Fan X, Zeng G, LaBounty C, Croke E, Vashaee D, Shakouri A, Ahn CC, Bowers JE (2001) High cooling power density SiGe/Si micro-coolers. Elec. Lett. 37, 2: 126–27

    Article  Google Scholar 

  • Filippou AC, Barandov A, Schnakenburg G, Lewall B, van Gastel M, Marchanka A (2012) Open- Shell Complexes Containing Metal–Germanium Triple Bonds. Angew. Chem. 51: 789–793

    Article  Google Scholar 

  • Gaudin E, Matar SF, Pöttgen R, Eul M, Chevaliert B (2011) Drastic Change of the Ferromagnetic Properties of the Ternary Germanide GdTiGe through Hydrogen Insertion. Inorg. Chem. 50, 21: 11046–11054

    Article  Google Scholar 

  • Geens W (2008) Umicore material solutions for photovoltaic energy. Präsentation S. 28, http://www.umicore.com/investorrelations/en/newsPublications/presentations/2008/CMD2008/show_CMD_PV_final.pdf, letzter Zugriff 13.02.2013

  • Gerung H, Boyle TJ, Tribby L J, Bunge SD, Brinker JC, Han SM (2006) Solution Synthesis of Germanium Nanowires Using a Ge2+ Alkoxide Precursor. J. Am. Chem. Soc. 128, 15: 5244–5250

    Article  Google Scholar 

  • Haustein M (2011) Die Lücke im Periodensystem – Germanium. Chem. Unserer Zeit 45: 398–404.

    Article  Google Scholar 

  • Hayashi H, Sound HI, Kogyo G (1985) Patent US 4525332

    Google Scholar 

  • Hobbs RG, Barth S, Petkov N, Zirngast M, Marschner C, Morris MA, Holmes JD (2010) Seedless Growth of Sub-10 nm Germanium Nanowires. J. Am. Chem. Soc. 132, 39: 13742–13749

    Article  Google Scholar 

  • Inoue S, Driess M (2011) Stammverbindungen der schweren Methylene: Chemische Tricks zur Erzeugung isolierbarer Komplexe von nicht fassbaren Spezies H2E (E=Ge und Sn). Angew. Chem. 123, 25: 5728–5730

    Article  Google Scholar 

  • Jana A, Ghoshal DD, Roesky HW, Objartel I, Schwab G, Stahlke D (2009) A Germanium(II) Hydride as an Effective Reagent for Hydrogermylation Reactions. J. Am. Chem. Soc. 131, 3: 1288–1293

    Article  Google Scholar 

  • Jana A, Nekoueisharaki B, Roesky HW, Schulzke C (2009) Stable Compounds of Composition LGe(II) R (R = OH, PhO, C6F5O, PhCO2) Prepared by Nucleophilic Addition Reactions. Organometallics. 28, 13: 3763–66

    Article  Google Scholar 

  • Katir N, Matiosek D, Ladeira S, Escudie J, Castel A (2011) Stable N-Heterocyclic Carbene Complexes of Hypermetallyl Germanium(II) and Tin(II) Compounds. Angew. Chem. 123: 5464–5467

    Article  Google Scholar 

  • Klüfers P, Vogler C (2007) Polyol Metal Complexes. Part 55 Germanes with Alkylenedioxy Substituents. Z. Anorg. Allg. Chem. 633, 5–6: 908–912

    Google Scholar 

  • Kong H, Shi X, Uher C, Morelli DT (2007) Thermo-electric properties of rare earth–ruthenium– germanium compounds J. Appl. Phys. 102, 2: 3702/5

    Google Scholar 

  • Kriesche G, Thiele U (Zimmer AG) Patent: DE4432839A1 21.03.1996.

    Google Scholar 

  • Kuehling K, Haass F (BASF) (2007) Patent: Thermal spraying of Pb/Ge/Te-materials WO 2007104603

    Google Scholar 

  • Kunio S, Akira T, Hiroyuk Y, Masahide H, Shiyouzou T, Kouzu K (1985) Patent JP 60166225.

    Google Scholar 

  • Lee DC, Pietryga JM, Robel I, Werder DJ, Schaller RD, Klimov VI (2009) Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals. J. Am. Chem. Soc. 131, 10: 3436–3437

    Article  Google Scholar 

  • Lehbrink W (2008) Radar-Chips aus SiGe. Automotive 3–4, S. 16

    Google Scholar 

  • Lignie A, Armand P, Papet P (2011) Growth of Piezoelectric Water-Free GeO2 and SiO2-Substituted GeO2 Single-Crystals. Inorg. Chem. 50, 19: 9311–9317

    Article  Google Scholar 

  • Mandal SK, Roesky HW (2012) Group 14 Hydrides with Low Valent Elements for Activation of Small Molecules. Acc. Chem. Res. 45, 2: 298–307

    Article  Google Scholar 

  • Marco-Lozar JP, Cazoria–Amoros D, Linares-Solano A (2007) A new strategy for germanium adsorption on activated carbon by complex formation. Carbon, 45, 13: 2519–2528; (2006) Patent: ES 2257181

    Article  Google Scholar 

  • Marco-Lozar JP, Linares-Solano A, Cazorla- Amorós D (2011) Effect of the porous texture and surface chemistry of activated carbons on the adsorption of a germanium complex from dilute aqueous solutions. Carbon, 49, 10: 3325–3331

    Article  Google Scholar 

  • Mathur S, Shen H, Sivakov V, Werner U (2004) Germanium Nanowires and Core–Shell Nano-structures by Chemical Vapor Deposition of [Ge(C5H5)2]. Chem. Mater. 16, 12: 2449–2456

    Google Scholar 

  • Müller S (1993)(Rhone-Poulenc) Patent: Method of producing a polyester, and use of the polyester thus produced. WIPO Patent Application WO/1993/022367

    Google Scholar 

  • Nagendran S, Roesky HW (2008) The Chemistry of Aluminum(I), Silicon(II), and Germanium(II). Organometallics. 27, 4: 457–92

    Article  Google Scholar 

  • Nomiya K, Togashi Y, Kasahara Y, Aoki S, Seki H, Noguchi M, Yoshida S (2011) Synthesis and Structure of Dawson Polyoxometalate-Based, Multifunctional, Inorganic–Organic Hybrid Compounds: Organogermyl Complexes with One Terminal Functional Group and Organosilyl Analogues with Two Terminal Functional Groups. Inorg. Chem. 50, 19: 9606–9619

    Article  Google Scholar 

  • Panchmatia PM, Orera A, Rees GJ, Smith ME, Hanna JV, Slater PR, Islam MS (2011) Oxygen Defects and Novel Transport Mechanisms in Apatite Ionic Conductors: Combined 17O NMR and Modeling Studies, Angew. Chem. 123: 9500–9505

    Article  Google Scholar 

  • Park MH, Cho YH, Kim K, Kim J, Liu M, Cho J (2011) Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries. Angew. Chem. 123: 9821–9824

    Article  Google Scholar 

  • Raw Materials Supply Group (2010) Critical raw materials for the EU. Report of the Ad-hoc Working Group on defining critical raw materials. http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/report-b_en.pdf, letzter Zugriff 13.02.2013

  • Rupar PA, Staroverov VN, Ragogna PJ, Baines KN (2008) Cryptand Encapsulated Germanium(II) Dication. Science. 322: 1360–1363

    Article  Google Scholar 

  • Scoyer J, Guislain H, Wolf HU (2002) Germanium and germanium compounds – resources and raw materials. S. 1–24, In: Ullmann`s Encyclopedia of Industrial Chemistry, 6. Auflage, Wiley- VCH Verlag. http://onlinelibrary.wiley.com/ doi/10.1002/14356007.a12_351/full

  • Seiler O (2005) Beiträge zur Chemie des höher-koordinierten Siliciums und Germaniums: Syn-these, Struktur und Eigenschaften dianionischer λ6Si-Silicate und λ6Ge-Germanate sowie neutraler penta- und hexakoordinierter Silicium-Verbindungen. Dissertation, Universität Würzburg

    Google Scholar 

  • Seiler O, Burschka C, Penka M, Tacke R (2002) Dianionic tris[oxalato(2-)]silicate and tris[oxalato(2-)]germanate complexes: synthesis, properties, and structural characterization in the solid state and in solution. Z. Anorg. Allg. Chem. 628, 11: 2427–2434

    Google Scholar 

  • Seiler O, Burschka C, Penka M, Tacke R (2004) Dianionic complexes with hexacoordinate silicon(IV) or germanium(IV) and three bidentate ligands of the salicylato(2–) type: syntheses and structural characterization in the solid state and in solution. Silicon Chemistry. Vol. Date 2002, 1, 5/6: 355–365

    Article  Google Scholar 

  • Seng KH, Park MH, Guo ZP, Liu HK, Cho J (2012) Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angew. Chem. 124: 5657–5661

    Article  Google Scholar 

  • Seppälä E, du Mont WW, Gust T, Manke J, Müller L (2003) Some New Nucleophile-Induced Reactions Involving SiCl2, GeCl2 and GeMe2 Transfer In: Norbert A, Johann W (Hrgs) Organosilicon chemistry — from molecules to materials V. VCH Weinheim. S. 213–216

    Chapter  Google Scholar 

  • Shiraki Y, Usami N (Hrgs; 2011) Silicon-Germanium (SiGe) Nanostructures: Production, Properties and Applications in Electronics. (Woodhead Publishing Series in Optical and Electronic Material) CRC Press, 656 S.

    Google Scholar 

  • Singh AP, Roesky HW, Carl E, Stahlke D, Demers JP, Lange A (2012) Lewis Base Mediated Autoionization of GeCl2 and SnCl2. J. Am. Chem. Soc. 134, 10: 4998–5003

    Article  Google Scholar 

  • Summerscales OT, Fettinger JC, Power, Philip PP (2011) C–H Activation of Cycloalkenes by Dimetallynes (M = Ge, Sn) under Ambient Conditions. J. Am. Chem. Soc. 133: 11960–11963

    Article  Google Scholar 

  • Tuan HY, Lee DC, Korgel BA (2006) Nanocrystal- Mediated Crystallization of Silicon and Germanium Nanowires in Organic Solvents: The Role of Catalysis and Solid-Phase Seeding, Angew. Chem. 118: 5308–5311

    Google Scholar 

  • Wang D, Dai H (2002) Low-Temperature Synthesis of Single-Crystal Germanium Nanowires by Chemical Vapor Deposition, Angew. Chem. 114: 4977–4979

    Article  Google Scholar 

  • Wang JQ, Stegmaier S, Fässler TF (2009) [Co@Ge10]3-: An Intermetalloid Cluster with Archimedean Pentagonal Prismatic Structure, Angew. Chem. 121: 2032–2036

    Article  Google Scholar 

  • Wang W, Inoue S, Yao S, Driess M (2011) Reactivity of N-Heterocyclic Germylene Toward Ammonia and Water. Organometallics. 30, 23: 6490–6494

    Article  Google Scholar 

  • Wen CY, Reuter MC, Bruley J, Tersoff J, Kodambaka S, Stach EA, Ross FM (2009) Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires. Science 326, 5957: 1247–1250

    Article  Google Scholar 

  • Wiggers H (Evonik) (2007) Patent Si/Ge-nanomaterials: DE 10.2007039060.4; (DE 102007039060A1 2009.0219)

    Google Scholar 

  • Zhan J, Bando Y, Hu J, Yin L, Yuan X, Sekiguchi T, Goldberg D (2006) Hollow and Polygonous Microtubes of Monocrystalline Indium Germanate. Angew. Chem. 118: 234–237

    Article  Google Scholar 

  • Ziegenbalg S, Schäffler E (1963) Patent GB 933563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Roewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roewer, G. (2014). Konsequenzen der modernen Germaniumchemie. In: Kausch, P., Bertau, M., Gutzmer, J., Matschullat, J. (eds) Strategische Rohstoffe — Risikovorsorge. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39704-2_16

Download citation

Publish with us

Policies and ethics