Skip to main content

Black Yeasts in Cold Habitats

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme locations, such as mountain tops, glaciers or polar areas, are now being investigated by mycologists. Many rock-colonizing fungi have been interpreted for long time as blackish fly-ash particles or dust on marble monuments or buildings. Black yeasts are easily overlooked in routine studies due to their very slow growth and poor competitive abilities. With the improvement isolation procedures, it has become clear that black yeasts are actually much more common and widespread than previously believed. Identification was hampered by their morphological plasticity, until molecular techniques became a routine approach in fungal systematic. In this chapter, the authors aim to give an overview of all the aspects concerning this unconventional group of fungi, from their peculiar ecology to their wide spectrum of biodiversity. Understanding about their ecological amplitude arose from impressive efforts in sampling remote habitats and concomitant sequencing activity during the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  PubMed  CAS  Google Scholar 

  • Bermejo JM, Dominguez JB, Goni FM, Uruburu F (1981) Influence of pH on the transition from yeast-like cells to chlamydospores in Aureobasidium pullulans. A van Leeuwenhoek 47:385–392

    Article  CAS  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost Glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Brunauer G, Blaha J, Hager A, Türk R, Stocker-Wörgötter E, Grube M (2007) Lichenoid structures in vitro of a cultured lichenicolous fungus. Symbiosis 44:127–136

    CAS  Google Scholar 

  • Brunner I, Plotze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier fore field in the Swiss Alps can promote granite weathering. Geobiology 9:266–279

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Butinar L, Strmole T, Spencer-Martins I, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2:e457

    Article  PubMed  Google Scholar 

  • de Hoog GS, Hermanides-Nijhof EJ (1977) The black yeasts and allied hyphomycetes. Stud Mycol 15:1–222

    Google Scholar 

  • de Hoog GS, McGinnis MR (1987) Ascomycetous black yeasts. Stud Mycol 30:187–199

    Google Scholar 

  • de Hoog GS, Takeo K, Yoshida S, Gottlich E, Nishimura K, Miyaji M (1994) Pleoanamorphic life cycle of Exophiala (Wangiella) dermatitidis. A van Leeuwenhoek 65:143–153

    Article  Google Scholar 

  • de Hoog GS, Zalar P, Urzì C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37

    Google Scholar 

  • de Hoog GS, Guarro J, Figueras MJ, Gené J (2009) Atlas of clinical fungi. 3rd CD-ROM ed. CBS-KNAW Fungal Biodiversity Centre, Utrecht/Universitat Rovira I Virgili, Reus

    Google Scholar 

  • de Hoog GS, Vicente VA, Harrak MJ, Najafzadeh MJ, Badali H, Seyedmousav S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46–72

    Article  PubMed  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Eviron Microbiol 5:231–237

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, de Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617

    Article  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138

    Article  CAS  Google Scholar 

  • Gorbushina AA, Beck A, Schulte A (2005) Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol Res 109:1288–1296

    Article  PubMed  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid modifying enzymes in halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:1–59

    Article  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390

    PubMed  Google Scholar 

  • Greenfield L (1981) Soil microbiological studies. In: Greenfield L, Wilson G (eds) University of Canterbury, Antarctic Expedition no. 19. Christchurch, pp 4–22

    Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  PubMed  CAS  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    Article  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Harutyunyan S, Muggia L, Grube M (2008) Black fungi in lichens from seasonally arid habitats. Stud Mycol 61:83–90

    Article  PubMed  CAS  Google Scholar 

  • Isola D (2010) Biodiversity, phylogeny and evolution of rock black fungi. PhD thesis, Università degli Studi della Tuscia, Viterbo

    Google Scholar 

  • Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K (2011) Sample preparation and 2-DE procedure for protein expression profiling of black microcolonial fungi. Fungal Biol 115:971–977

    Article  PubMed  CAS  Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia. doi:10.1007/s11046-013-9635-2

    PubMed  Google Scholar 

  • Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microb 71:6600–6605

    Article  CAS  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi—novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Li DM, de Hoog GS, Lindhardt Saunte DM, Gerrits van den Ende AHG, Chen XR (2008) Coniosporium epidermidis sp. nov., a new species from human skin. Stud Mycol 61:131–136

    Article  PubMed  CAS  Google Scholar 

  • Li DM, Li RY, de Hoog GS, Wang YX, Wang DL (2009) Exophiala asiatica, a new species from a fatal case in China. Med Mycol 47:101–109

    Article  PubMed  CAS  Google Scholar 

  • Liu GY, Nizet V (2009) Color me bad: microbial pigments as virulence factors. TIM 17:406–413

    CAS  Google Scholar 

  • Lyakh SP, Ruban EL (1970) Antarctic “black yeasts” Nadsoniella nigra var. hesuelica (characteristics and identification of strain 365). Izv Akad Nauk Biol 4:581–592

    Google Scholar 

  • Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B (2012) Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy. Int Biodet Biodeg 68:36–44

    Article  CAS  Google Scholar 

  • Matos T, Haase G, Gerrits van den Ende AH, de Hoog GS (2003) Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. A van Leeuwenhoek 83:293–303

    Article  CAS  Google Scholar 

  • Matsumoto T, Matsuda T, McGinnis MR, Ajello L (1984) Clinical and mycological spectra of Wangiella dermatitidis infections. Mycoses 36:145–155

    Article  Google Scholar 

  • Matsumoto T, Padhye AA, Ajello L, McGinnis MR (1986) Sarcinomyces phaeomuriformis: a new dematiaceous hyphomycete. J Med Vet Mycol 24:395–400

    Article  PubMed  CAS  Google Scholar 

  • Mendoza L, Karuppayil SM, Szaniszlo PJ (1993) Calcium regulates in vitro dimorphism in chromoblastomycotic fungi. Mycoses 36:157–164

    Article  PubMed  CAS  Google Scholar 

  • Moses V, Holm-Hansen O, Calvin M (1959) Non photosynthetic fixation of carbon dioxide by three microorganisms. J Bacteriol 77:70–78

    PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advantage. Mutat Res 1:2–9

    Article  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial litophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  • Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes) anam. gen. sp. nov., from continental Antarctica. Nova Hedwigia 68:175–181

    Google Scholar 

  • Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at the boundaries of life. Adv Space Res 40:1657–1664

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Mars conditions. Stud Mycol 61:99–109

    Article  PubMed  CAS  Google Scholar 

  • Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2009) Fungal survival in space conditions: new insights for lithopanspermia. Plant Biosyst 143:S85–S87

    Google Scholar 

  • Onofri S, Anastasi A, Del Frate G, Di Piazza S, Garnero N, Guglielminetti M, Isola D, Panno L, Ripa C, Selbmann L, Varese GC, Voyron S, Zotti M, Zucconi L (2011) Biodiversity of rock, beach and water fungi in Italy. Plant Biosyst 145:978–987

    Article  Google Scholar 

  • Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran K, Rabbow E, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  PubMed  Google Scholar 

  • Palmer RJ, Friedman EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58:189–191

    PubMed  Google Scholar 

  • Palmer FE, Staley JT, Ryan B (1990) Ecophysiology of microcolonial fungi and lichens on rocks in Northeastern Oregon. New Phytol 116:613–620

    Article  Google Scholar 

  • Pedersen OA, Langvad F (1989) Exophiala psychrophila sp. nov., a pathogenic species of the black yeasts isolated from Atlantic salmon. Mycol Res 92:153–156

    Article  Google Scholar 

  • Plemenitaš A, Gunde-Cimerman N (2005) Cellular responses in the halophilic black yeast Hortaea werneckii to high environmental salinity. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 455–470

    Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell RC, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard. FEMS Microbiol Rev 30:109–130

    Google Scholar 

  • Richards RH, Holliman A, Helgason S (1978) Exophiala salmonis infection in Atlantic salmon Salmo salar L. J Fish Dis 1:357–368

    Article  Google Scholar 

  • Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38

    Article  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    Article  PubMed  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotech 6:127–141

    Article  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi Z, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese G (2012) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246

    Google Scholar 

  • Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2013a) Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Divers doi:10.1007/s13225-013-0234-9

  • Selbmann L, Grube M, Onofri S, Isola D, Zucconi L (2013b) Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2:784–797

    Article  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). A van Leeuwenhoek 91:217–227

    Article  CAS  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380

    Article  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldu′ FX, de Hoog GS (2011) Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzene and arsenic. Fungal Biol 115:1030–1037

    Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

    Article  PubMed  Google Scholar 

  • Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095

    Article  PubMed  CAS  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock inhabiting meristematic fungi. A van Leeuwenhoek 74:271–281

    Article  CAS  Google Scholar 

  • Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook: biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518

    Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Sudhadham M, Prakitsin S, Sivichai S, Chaiwat R, Menken SBJ, Dorrestein GM, de Hoog GS (2008) The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud Mycol 61:145–155

    Article  PubMed  CAS  Google Scholar 

  • Sun SH, Huppert M, Cameron RE (1978) Identification of some fungi from soil and air of Antarctica. Antarct Res Ser 30:1–26

    Article  Google Scholar 

  • Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of protein patterns in black rock inhibiting fungi as a response to different temperatures. Fungal Biol 116:932–940

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Abramovic Z, Plemenitas A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  PubMed  CAS  Google Scholar 

  • Vadkertiova R, Slavikova E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766

    Article  PubMed  CAS  Google Scholar 

  • Van de Sande W, de Kat J, Ahmed A, Verbrugh H, van Belkum A (2006) Melanin protects Madurella mycetomatis against itraconazole and ketoconazole, firstline treatment agents against mycetoma. Ned Tijdschr Med Microbiol 14:520–521

    Google Scholar 

  • Van Uden N (1984) Temperature profiles of yeasts. Adv Microbiol Physiol 25:195–251

    Article  Google Scholar 

  • Vicente VA, Attili-Angelis D, Pie MR, Queiroz-Telles F, Cruz LM, Najafzadeh MJ, de Hoog GS, Pizzirani-Kleine AR (2008) Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol 61:137–144

    Article  PubMed  CAS  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Tot Environ 167:287–294

    Article  CAS  Google Scholar 

  • Xi L, Lu C, Sun J, Li X, Liu H, Zhang J, Xie Z, de Hoog GS (2009) Chromoblastomycosis caused by a meristematic mutant of Fonsecaea monophora. Med Mycol 47:77–80

    Article  PubMed  Google Scholar 

  • Zalar P, Gostincar C, de Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zeng J, de Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX (2010) Isolation of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60:149–156

    Article  PubMed  CAS  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Selbmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selbmann, L., de Hoog, G.S., Zucconi, L., Isola, D., Onofri, S. (2014). Black Yeasts in Cold Habitats. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_8

Download citation

Publish with us

Policies and ethics