Skip to main content

Cold-Adapted Yeasts in Deep-Sea Environments

  • Chapter
  • First Online:
  • 1538 Accesses

Abstract

Deep sea, the world’s largest cold environment, is an environment of extreme conditions, such as high hydrostatic pressure and low nutrient availability, and has an average water temperature between −1 and 4 °C in most areas of deep sea. Living organisms in deep sea are considered to be adapted to cold environments. Yeast diversity commonly found in deep sea is represented by Rhodosporidium spp., Rhodotorula spp., Candida spp., Cryptococcus spp., Pichia spp., Sporobolomyces spp., and Trichosporon spp. This representation of yeasts is similar to yeasts found in other cold environments. Only psychrotolerant yeasts have been reported from deep-sea environments to date. However, the majority of yeasts isolated from deep-sea environments show better growth in deep-sea simulated conditions, such as 3 °C/40 MPa, than yeasts isolated from terrestrial environments. In comparison with prokaryotic microorganisms, yeasts in deep-sea environments are relatively underexplored, with few studies carried out on their physiology. Although the true yeast diversity and their ecology in deep-sea environments remains unclear, the intention of this chapter is to discuss current knowledge on deep-sea yeast diversity and their physiological characteristics and adaptation mechanisms to cold and high pressure in the model yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe F (2007a) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    Article  PubMed  CAS  Google Scholar 

  • Abe F (2007b) Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett 581:4993–4998

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178:851–872

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    Article  PubMed  CAS  Google Scholar 

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  PubMed  CAS  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Birrien J-L, Zeng X, Jebbar M, Cambon-Bonavita M-A, Querellou J, Oger P, Bienvenu N, Xiao X, Prieur D (2011) Pyrococcus yayanosii sp nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831

    Article  PubMed  CAS  Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73:121–133

    PubMed  CAS  Google Scholar 

  • Burgaud G, Arzur D, Sampaio JP, Barbier G (2011) Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (−2,300 m). A van Leeuwenhoek 100:75–82

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR (2006) Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7:1503–1517

    Article  PubMed  CAS  Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal Diversity Associated with an Active Deep Sea Volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Research Part I-Oceanographic Research Papers 53:14–27

    Article  Google Scholar 

  • de Garcia V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  Google Scholar 

  • Fernandes PM, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417

    Article  PubMed  CAS  Google Scholar 

  • Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 1, 2nd edn. Academic Press, London, pp 181–205

    Google Scholar 

  • Hiraki T, Sekiguchi T, Kato C, Hatada Y, Maruyama T, Abe F, Konishi M (2012) New type of pressurized cultivation method providing oxygen for piezotolerant yeast. J Biosci Bioeng 113:220–223

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  PubMed  CAS  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  PubMed  CAS  Google Scholar 

  • Kaneshina S, Ichimori H, Hata T, Matsuki H (1998) Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta 1374:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  PubMed  CAS  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  Google Scholar 

  • Misu K, Fujimura-Kamada K, Ueda T, Nakano A, Katoh H, Tanaka K (2003) Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae. Mol Biol Cell 14:730–747

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (1999) Kluyveromyces nonfermentans sp nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 49:1899–1905

    Article  PubMed  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001a) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. A van Leeuwenhoek 80:101–110

    Article  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2001b) Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. A van Leeuwenhoek 80:317–323

    Article  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2003a) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2003b) Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Microbiol 53:897–903

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Horikoshi K (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol 56:295–299

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Abdel-Wahab MA, Nogi Y, Miyazaki M, Uematsu K, Hamamoto M, Horikoshi K (2008) Dipodascus tetrasporeus sp nov., an ascosporogenous yeast isolated from deep-sea sediments in the Japan Trench. Int J Syst Evol Microbiol 58:1040–1046

    Article  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fung Ecol 3:316–325

    Article  Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Marine Sci 44:495–522

    Article  Google Scholar 

  • Roth FJ, Orpurt PA, Ahearn DJ (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fung Diversity 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central Indian basin by culture-independent approach. Microb Ecol 61:507–517

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovenbreen glacier, Svalbard, Arctic. Cryobiology 66:167–175

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    Article  PubMed  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169

    Article  PubMed  CAS  Google Scholar 

  • Thaler AD, Van Dover CL, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fung Ecol 5:270–273

    Article  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp nov., Mrakia blollopis sp nov and Mrakiella niccombsii sp nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Wang FP, Wang P, Chen MX, Xiao X (2004) Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8:165–168

    Article  PubMed  CAS  Google Scholar 

  • Winter R, Dzwolak W (2005) Exploring the temperature-pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos Transact A Math Phys Eng Sci 363:537–563

    Article  CAS  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Nagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagano, Y., Nagahama, T., Abe, F. (2014). Cold-Adapted Yeasts in Deep-Sea Environments. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_7

Download citation

Publish with us

Policies and ethics