Skip to main content

Cold-Adapted Yeasts as Biocontrol Agents: Biodiversity, Adaptation Strategies and Biocontrol Potential

  • Chapter
  • First Online:

Abstract

After harvest, many fruits are kept in cold storage in order to prolong their availability and shelf life. Often, this requires the application of a chemical fungicide to prevent postharvest decay from decay fungi. An alternative approach for preventing postharvest fungal decay during storage could be based on the treatment of the commodity with antagonistic yeasts. In this regard, the use of cold-adapted yeasts may offer a distinct advantage. Numerous cold-adapted yeast species have been isolated from artificial cold environments, as well as cold-stored fruits. Since the method employed to isolate potential antagonists has a major impact on the type and properties of the antagonist to be identified, it is important to evaluate the consequences of the methods that are presently being utilized and to appraise whether or not they can be improved. Although the mechanism(s) by which yeast antagonists suppress postharvest diseases can be quite variable, competition for nutrients and space plays a major role in their antagonistic activity. Additionally, production of antibiotics, direct parasitism and the induction of resistance in the harvested commodity are other modes of action that have been documented and suggested to play a role in how yeasts suppress postharvest pathogens in harvested fruits. While a few yeast-based products have been on the market, this field of study is still in its infancy and it is likely that several new products will enter the market in near future. Nonetheless, it is necessary to continue to identify new potential microorganisms and to develop a better understanding of the biology of yeast biocontrol systems by involving yeasts, pathogens and host commodity, in order to increase the potential of postharvest biocontrol as a viable alternative to synthetic postharvest fungicides. While the results of this technology are encouraging, we need to continue to explore the potential use of appropriate yeasts worldwide where management practices, types of fruit and decay pathogens can vary considerably.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abadias M, Teixido N, Usall J, Viñas I (2003) Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA-1 in a lab-scale fermenter. J Appl Microbiol 95:301–309

    Article  PubMed  CAS  Google Scholar 

  • Abano E, Sam-Amoah LK (2012) Application of antagonistic microorganisms for the control of postharvest decays in fruits and vegetables. IJABR 2:1–8

    Google Scholar 

  • Amato P, Doyle S, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596

    Article  PubMed  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arras G (1996) Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orage fruits. Postharvest Biol Technol 8:191–198

    Google Scholar 

  • Baker KJ, Cook RJ (1974) Biological control of plant pathogens. WH Freeman, San Francisco

    Google Scholar 

  • Barkai-Goland R (2001) Biological control. In: Barkai-Goland R (ed) Postharvest diseases of fruit, vegetables: development and control. Elsevier Sciences, Amsterdam, pp 221–255

    Chapter  Google Scholar 

  • Bastiaanse H, Bellaire LL, Lassois L, Misson C, Jijakli MH (2009) Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biol Control 53:100–107

    Article  CAS  Google Scholar 

  • Bleve GF, Grieco G, Cozzi A, Logrieco A, Visconti A (2006) Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A niger on grape. Int J Food Microbiol 108:204–209

    Article  PubMed  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost Glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Brandao LR, Libkind D, Vaz AB, Espirito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, Gasparetti C, van Broock M (2007) Extracellular enzymatic activities (EEA) in basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Brunner I, Plotze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 9:266–279

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Zheng Y, Tang S, Wang K (2008) Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2. Int J Food Microbiol 126:216–220

    Article  PubMed  CAS  Google Scholar 

  • Castoria R, de Curtis F, Lima G, de Cicco V (1997) b-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biol Technol 12:293–300

    Article  CAS  Google Scholar 

  • Castoria R, de Curtis F, Lima G, Caputo L, Pacifico S, de Cicco V (2001) Aureobasidium pullulans (LS-30), antagonist of postharvest pathogens of fruits: study on its mode of action. Postharvest Biol Technol 32:717–724

    Google Scholar 

  • Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruit and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capscii). Biol Control 42:326–335

    Article  Google Scholar 

  • Chand Goyal T, Spotts RA (1996) Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole. Postharvest Biol Technol 7:51–64

    Article  CAS  Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  CAS  Google Scholar 

  • di Menna ME (1966) Yeasts in Antarctic soil. A van Leeuwenhoek 32:29–38

    Article  Google Scholar 

  • Droby S, Hofstein R, Wilson CL, Wisniewski M, Fridlender B, Cohen L, Weiss B, Daus A, Timar D, Chalutz E (1993) Pilot testing of Pichia guilliermondii: a biocontrol agent for postharvest diseases of citrus fruit. Biol Control 3:47–52

    Article  Google Scholar 

  • Droby S, Hofstein R, Wilson C, Wisniewski M, Fridlender B, Cohen L, Weiss B, Daus A, Chalutz E (1996) Pilot test of Pichia guilliermondii: A biocontrol agent of postharvest diseases of citrus fruit. Biol Control 3:47–52

    Article  Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A (1998) Commercial testing of Aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101

    Article  Google Scholar 

  • Droby S, Lischinski S, Cohen L, Weiss B, Daus A, Chand-Goyal T, Eckert JW, Manulis S (1999) Characterization of an epiphytic yeast population of grapefruit capable of suppression of green mold decay caused by Penicillium digitatum. Biol Control 16:27–34

    Article  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski ME (1998) Ultrastructural and cytochemical aspects of biocontrol activity of Candida saitona in apple fruit. Phytopathology 88:282–291

    Article  PubMed  CAS  Google Scholar 

  • Fan Q, Tian SP (2001) Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biol Technol 21:341–350

    Article  Google Scholar 

  • Ferrari A, Sicher C, Prodorutti D, Pertot I (2007) Potential new applications of Shemer, a Metschnikowia fructicola based product, in post-harvest soft fruit rots control. Bull OILB/SROP 30:43–46

    Google Scholar 

  • Fiori S, Fadda A, Giobbe S, Berardi E, Migheli Q (2008) Pichia angusta is an effective biocontrol yeast against postharvest decay of apple fruit caused by Botrytis cinerea and Monilia fructicola. FEMS Yeast Res 8:961–963

    Article  PubMed  CAS  Google Scholar 

  • Fokkema NJ (1984) Competition for endogenous and exogenous nutrients between Sporobolomyces roseus and Cochliobolus sativus. Can J Bot 162:2463–2468

    Article  Google Scholar 

  • Fonseca Á, Inacio J (2006) Phylloplane Yeasts. In: Rosa C, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Gholamnejad J, Etebarian HR, Sahebani N (2010) Biological control of apple blue mold with Candida membranifaciens and Rhodotorula mucilaginosa. African J Food Sci 4:1–7

    CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichius K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Giobbe S, Marceddu S, Scherm B, Zara G, Mazzarello V, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res 7:1389–1398

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    Article  PubMed  CAS  Google Scholar 

  • Grevesse C, Lepoivre F, Jijakli MH (2003) Characterization of the exoglucanase-encoding gene PaEXG2 and study of its role in the biocontrol activity of Pichia anomala strain K. Phytopathology 93:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol 56:181–187

    Article  CAS  Google Scholar 

  • Hofstein R, Fridlender B, Chalutz E, Droby S (1994) Large scale production and pilot testing of biocontrol agents of postharvest diseases. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases of fruits and vegetables - theory and practice. CRC Press, Boca Raton, pp 89–100

    Google Scholar 

  • Ippolito A, El Ghaouth A, Wilson CL, Wisniewski M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19:265–272

    Article  CAS  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. Bull OEPP/EPPO 41:65–71

    Article  Google Scholar 

  • Janisiewicz WJ (2010) Quo vadis of biological control of postharvest diseases In: Prusky D, Gullino ML (eds) Post-harvest pathology. Plant pathology in the 21st century, vol 2. Springer, Berlin, pp 137–148

    Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  PubMed  CAS  Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue-mold and gray-mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700

    Article  Google Scholar 

  • Janisiewicz WJ, Petterson DL, Bors R (1994) Control of storage decay of apples with Sporobolomyces roseus. Plant Dis 78:466–470

    Article  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol potential of Metschnikowia pulcherrima strains against blue mold of apple. Phytopathology 91:1098–1108

    Article  PubMed  CAS  Google Scholar 

  • Jijakli HM (2011) Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. A van Leeuwenhoek 99:93–105

    Article  Google Scholar 

  • Jijakli HM, Lepoivre P (1998) Characterization of an exo–1, 3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    Article  PubMed  CAS  Google Scholar 

  • Karabulut OA, Smilanick JL, Gabler FM, Mansour M, Droby S (2003) Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Dis 87:1384–1389

    Article  CAS  Google Scholar 

  • Kurtzman CP, Droby S (2001) Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst Appl Microbiol 24:395–399

    Article  PubMed  CAS  Google Scholar 

  • Lahlali R, Serrhini MN, Jijakli MH (2004) Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruit in Morocco. Commun Agric Appl Biol Sci 69:601–609

    PubMed  CAS  Google Scholar 

  • Lahlali R, Hamadi Y, El guilli M, Jijakli MH (2011) Efficacy assessment of Pichia guilliermondii strain Z1, a new biocontrol agent, against citrus blue mould in Morocco under the influence of temperature and relative humidity. Biol Control 56:217–224

    Article  Google Scholar 

  • Lassois L, de Bellaire L, Jijakli MH (2008) Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biol Control 45:410–418

    Article  Google Scholar 

  • Lennox CL, Spotts R (2003) Sensitivity of populations of Botrytis cinerea from pear-related sources to benzimidazole and dicarboximide fungicides. Plant Dis 87:645–649

    Article  CAS  Google Scholar 

  • Li R, Zhang H, Liu W, Zheng X (2011) Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int J Food Microbiol 146:151–156

    Article  PubMed  Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. A van Leeuwenhoek 84:313–322

    Article  CAS  Google Scholar 

  • Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178

    Article  Google Scholar 

  • Lima G, De Curtis F, Castoria R, De Cicco V (1998) Activity of the yeas Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Sci Technol 8:257–267

    Article  Google Scholar 

  • Liu J, Michael W, Droby S, Vero S, Tian S, Hershkovitz V (2011) Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int J Food Microbiol 146:76–83

    Article  PubMed  CAS  Google Scholar 

  • Long CA, Deng BX, Deng XX (2006) Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Annals Microbiol 56:13–17

    Article  Google Scholar 

  • Lutz, MC, Rodríguez ME, Sosa, MC, Lopes CA, Sangorrín MP (2010) Yeast biodiversity on the surface of cold storage pears: potential antagonists of postharvest mold. Asociación Latinoamericana de Genética (ALAG), Viña del Mar, Chile

    Google Scholar 

  • Lutz MC, Sosa MC, Lopes CA, Sangorrín MP (2012) A new improved strategy for the selection of cold-adapted antagonist yeasts to control postharvest pear diseases. Biocontrol Sci Technol 22:1465–1483

    Article  Google Scholar 

  • Lutz MC, Sosa MC, Rodriguez ME, Lopes CA, Sangorrín MP (2013) Efficacy and putative mode of action of native and commercial antagonistic yeasts against postharvest pear pathogens. Int J Food Microbiol 164:166–172

    Article  PubMed  CAS  Google Scholar 

  • Macarisin D, Droby S, Bauchan G, Wisniewski M (2010) Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol Technol 58:194–202

    Article  CAS  Google Scholar 

  • Mandal G, Singh D, Sharm RR (2007) Effect of hot water treatment and biocontrol agent (Debaryomyces hansenii) on shelf life of peach. Indian J Hortic 64:25–28

    Google Scholar 

  • Manso T, Nunes C (2011) Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol Technol 61:64–71

    Article  Google Scholar 

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  PubMed  CAS  Google Scholar 

  • Massart S, Jijakli H (2007) Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Meth 69:229–234

    Article  CAS  Google Scholar 

  • Mc Guire RG (2000) Population dynamics of postharvest decay antagonists growing epiphytically and within wounds on grapefruit. Phytopathology 90:1217–1223

    Article  CAS  Google Scholar 

  • Mercier J, Wilson CL (1994) Colonization of apple wounds by naturally-occurring microflora and introduced Candida oleophila and their effect on infection by Botrytis cinerea during storage. Biol Control 4:138–144

    Article  Google Scholar 

  • Morales H, Sanchis V, Usall J, Ramos AJ, Marín S (2008) Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67

    Article  PubMed  Google Scholar 

  • Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Nunes CA, Usall J, Teixido N, Viñas I (2001) Biological control of postharvest pear diseases using a bacterium Pantoea agglomerans CPA-2. Int J Food Microbiol 70:53–61

    Article  PubMed  CAS  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen Glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  PubMed  CAS  Google Scholar 

  • Patiño-Vera M, Jimenez B, Balderas K, Ortiz M, Allende R, Carrillo A, Galindo E (2005) Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J Appl Microbiol 99:540–550

    Article  PubMed  CAS  Google Scholar 

  • Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54:343–348

    Article  CAS  Google Scholar 

  • Pelinski R, Cerrutti P, Ponsone ML, Chulze S, Galvagno M (2012) Statistical optimization of simple culture conditions to produce biomass of an ochratoxigenic mould biocontrol yeas. Lett Appl Microbiol 54:377–382

    Article  PubMed  CAS  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, biology of yeasts. Academic Press, London, pp 123–180

    Google Scholar 

  • Piano S, Neyrotti V, Migheli Q, Gullino Ml (1997) Biocontrol capability of Metschnikowia pulcherrima against Botrytis postharvest rot of apple. Postharvest Biol Technol 11:131–140

    Article  Google Scholar 

  • Pimenta RS, Morais PB, Rosa CA, Corrêa AJr (2009) Utilization of yeasts in biological control programs. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Science + Business Media BV, New York, pp 199–214

    Google Scholar 

  • Qin GZ, Tian SP, Xu Y (2004) Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest Technol 31:51–58

    Article  Google Scholar 

  • Roberts RG (1990) Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80:526–530

    Article  Google Scholar 

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216

    Article  PubMed  Google Scholar 

  • Rossi M, Buzzini M, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation, and fatty acids composition in obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372

    Article  PubMed  CAS  Google Scholar 

  • Saravanakumar D, Spadaro D, Garibaldi A, Gullino LM (2009) Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. Eur J Plant Pathol 123:183–193

    Article  CAS  Google Scholar 

  • Scherm B, Ortu G, Muzzu A, Budroni M, Arras G, Migheli O (2003) Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. J Plant Pathol 85:205–213

    Google Scholar 

  • Schisler DA, Janisiewicz WJ, Boekhout T, Kurtzman CP (2011) Agriculturally important yeasts: biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants. In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts: a taxonomic study. Elsevier, Amsterdam, pp 45–52

    Chapter  Google Scholar 

  • Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  PubMed  CAS  Google Scholar 

  • Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Article  PubMed  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Sugar D, Basile SR (2008) Timing and sequence of postharvest fungicide and biocontrol agent applications for control of pear decay. Postharvest Biol Technol 49:107–112

    Article  CAS  Google Scholar 

  • Sundh I, Melin P (2011) Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. A van Leeuwenhoek 99:113–119

    Article  Google Scholar 

  • Teixido N, Torres R, Viñas I, Abadias M, Usall J (2011) Biological control of postharvest diseases in fruit and vegetables In: Lacroix C (ed) Protective cultures, antimicrobial metabolites, and bacteriophages for food and beverage bio preservation. Woodhead Publ Ltd, Cambridge, pp 365–402

    Google Scholar 

  • Tian SP, Qin GZ, Xu Y (2005) Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. J Food Protect 68:544–550

    CAS  Google Scholar 

  • Torres R, Teixido N, Viñas I, Mari M, Casalini L, Giraud M, Usall J (2006) Efficacy of Candida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. J Food Protect 69:2703–2711

    CAS  Google Scholar 

  • Torres R, Nunes C, García JM, Abadias M, Viñas I, Manso T, Olmo M, Usall J (2007) Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several mediterranean locations. Eur J Plant Pathol 118:73–83

    Article  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  PubMed  CAS  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Teixeira LCR, Moliné M, Libkind D, van Broock M, Carlo CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  PubMed  CAS  Google Scholar 

  • Vero S, Mondino P, Burgueño J, Soubes M, Wisniewski M (2002) Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biol Technol 26:91–98

    Article  Google Scholar 

  • Vero S, Garmendia G, Gonzalez MB, Garat MF, Wisniewski ME (2009) Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Sci Technol 19:1033–1049

    Article  Google Scholar 

  • Vero S, Garmendia G, Garat MF, Wisniewski ME (2011) Cystofilobasidium infirmominiatum as a biocontrol agent of postharvest diseases of apple and citrus. Acta Hortic 905:169–180

    CAS  Google Scholar 

  • Vero S, Garmendia G, González MB, Bentancur O, Wisniewski M (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica). FEMS Yeast Res 13:189–199

    Article  PubMed  CAS  Google Scholar 

  • Viñas I, Usall J, Teixidó N, Sanchis V (1998) Biological control of major postharvest pathogens on apple with Candida sake. Int J Food Microbiol 40:9–16

    Article  PubMed  Google Scholar 

  • Wang Y, Yu T, Li Y, Cai D, Liu X, Lu H, Zheng XD (2009) Postharvest biocontrol of Alternaria alternata in chinese winter jujube by Rhodosporidium paludigenum. J Appl Microbiol 107:1492–1498

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Liu X, Wang Y, Ruan H, Zheng X (2011) Statistical media optimization for the biomass production of postharvest biocontrol yeast Rhodosporidium paludigenum. Prep Biochem Biotechnol 41:382–397

    Article  PubMed  CAS  Google Scholar 

  • Wilson C (1990) Postharvest Biological control of Penicillium rots of citrus with antagonistic yeasts and bacteria. Sci Hortic 40:105–112

    Article  Google Scholar 

  • Wilson C (2013) Establishment of a world food preservation center. Agric Food Secur 2:1–4

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME, Droby S, Chalutz E (1993) A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Sci Hortic 53:183–189

    Article  Google Scholar 

  • Wisnieswski ME, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E (1991) Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii I. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39:245–258

    Article  Google Scholar 

  • Wisniewski ME, Droby S, Chalutz E, Eilam Y (1995) Effect of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathol 44:1016–1024

    Article  CAS  Google Scholar 

  • Wisniewski ME, Droby S, El-Ghaouth A, Droby S (2001) Non-chemical approaches to postharvest disease control. Acta Hortic 553:407–411

    CAS  Google Scholar 

  • Wisniewski ME, Bassett CL, Artlip TS, Janisiewicz WJ, Norelli JL, Droby S (2005) Overexpression of a peach defensin gene can enhance the activity of post harvest biocontrol agents. Acta Hortic 682:1999–2006

    CAS  Google Scholar 

  • Wisniewski M, Wilson C, Droby S, Chalutz E, El Ghaouth A, Stevens C (2007) Postharvest biocontrol: new concepts and applications. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Boca Raton, pp 262–273

    Chapter  Google Scholar 

  • Xi L, Tian SP (2005) Control of postharvest diseases of tomato fruit by combining antagonistic yeast with sodium bicarbonate. Sci Agric Sin 38:950–955

    Google Scholar 

  • Xu XB, Tian SP (2008) Reducing oxidative stress in sweet cherry fruit by Pichia membranifaciens: a possible mode of action against Penicillium expansum. J Appl Microbiol 105:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Yao HJ, Tian SP (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol 98:941–950

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zheng X, Xi Y (2005) Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. Biol Control 50:331–342

    Google Scholar 

  • Zhang H, Zheng XD, Yu T (2007) Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18:287–291

    Article  CAS  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol Technol 55:174–181

    Article  CAS  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2011) Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biol Control 57:193–201

    Article  Google Scholar 

  • Zhao Y, Tu K, Shao X, Jing W, Su Z (2008) Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biol Technol 49:113–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela P. Sangorrín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sangorrín, M.P., Lopes, C.A., Vero, S., Wisniewski, M. (2014). Cold-Adapted Yeasts as Biocontrol Agents: Biodiversity, Adaptation Strategies and Biocontrol Potential. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_20

Download citation

Publish with us

Policies and ethics