Skip to main content

Fundamentals of Cold-Active Enzymes

  • Chapter
  • First Online:
Book cover Cold-adapted Yeasts

Abstract

Cold-active enzymes are produced by organisms adapted to permanently cold habitats. Due to the depressive effect of low temperatures on reaction rates, these enzymes have to be adapted to secure appropriate reaction rates in those organisms that often thrive in environments characterized by temperatures close or below the freezing point of water. They are encountered in all prokaryotic or eukaryotic organisms adapted to cold such as microorganisms, invertebrates, insects and fish originating from the Arctic and Antarctic zones, as well as from alpine regions, glaciers or permafrost zones. They are characterized by a high specific activity at low temperatures, in any case higher than that of their mesophilic and thermophilic counterparts. This higher specific activity is generally accompanied by a decrease in thermal stability illustrated by a shift of the apparent optimum towards low temperatures, and by an important decrease in the thermodynamic stability characterized by a significantly lower stabilization enthalpy. The generally low stability induces an increase in the flexibility of the overall edifice or of crucial zones for activity of the molecular structure. There is apparently a continuum in the adaptation since some enzymes display extreme adaptation illustrated by a severe shift of the activity towards low temperatures whereas others are moderately adapted. This probably depends on their position in a metabolic pathway, on their intracellular or extracellular localization, on the environmental temperature and on the evolutionary history of the organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekoya OA, Helland R, Willassen NP, Sylte I (2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62:435–439

    Article  PubMed  CAS  Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanktis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  PubMed  CAS  Google Scholar 

  • Aghajari N, Roth M, Haser R (2002) Crystallographic evidence of a transglycosylation reaction: ternary complexes of a psychrophilic α-amylase. Biochemistry 41:4273–4280

    Article  PubMed  CAS  Google Scholar 

  • Aghajari N, Van petegem F, Villeret V, Chessa J-P, Gerday C, Haser R, Van Beeumen J (2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins 50:636–647

    Google Scholar 

  • Almog O, Gonzales A, Klein D, Greenblatt HM, Braun S, Shoham G (2003) The 0.93Å crystal structure of spericase: a calcium-loaded serine protease from Bacillus sphaericus. J Mol Biol 332:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Altermark B, Niiranen L, Willassen NP, Smalas AO, Moe E (2007) Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae. FEBS J 274:252–263

    Article  PubMed  CAS  Google Scholar 

  • Arnorsdottir J, Helgadottir S, Thorbjarnardottir SH, Eggertsson G, Kristjansson MM (2007) Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1774:749–755

    Article  PubMed  CAS  Google Scholar 

  • Asgeirsson B, Adalbjörsson BV, Gylfason GA (2007) Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Biochim Biophys Acta 1774:679–687

    Article  PubMed  CAS  Google Scholar 

  • Birgisson H, Delgado O, Garcia-Arroyo L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    PubMed  CAS  Google Scholar 

  • Bjelic S, Bransdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057

    Article  PubMed  CAS  Google Scholar 

  • Chessa J-P, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of the heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274

    Article  PubMed  CAS  Google Scholar 

  • Chiappori F, Pucciarelli S, Merelli I, ballarini P, Miceli C, Milanesi L (2012) Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii. Proteins 80:1154–1166

    Article  PubMed  CAS  Google Scholar 

  • Chiuri R, Majorano G, Rizello A, del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596

    Article  PubMed  CAS  Google Scholar 

  • Cipolla A, Delbrassine F, da Lage JL, Feller G (2012) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94:1943–1950

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Meuwis M-A, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 338:419–428

    Article  CAS  Google Scholar 

  • Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) I cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM press, Washington DC, pp 165–179

    Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles from biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Chapter  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2002) Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted α-amylase. J Biol Chem 48:46110–46115

    Article  CAS  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationship in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Sohier J-S, Feller G (2006) Kinetics and energetics of ligand binding determined by microcalorimetry: insight into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358:1296–1304

    Article  PubMed  CAS  Google Scholar 

  • Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat labile subtilisin from the Antarctic psychrophile Bacillus TA 41. J Biol Chem 269:17448–17453

    PubMed  CAS  Google Scholar 

  • Demchenko AP, Rusyn OI, Saburova EA (1989) Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim Biophys Acta 998:196–203

    Article  PubMed  CAS  Google Scholar 

  • Dias CL, Ala-Nissila T, Wong-E kkabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  • Fedoy A-E, Yang N, Martinez A, Leiros H-K, Stee H (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372:130–149

    Article  PubMed  CAS  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  PubMed  CAS  Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens 22:32101–32118

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of col adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 41:477–479

    Article  CAS  Google Scholar 

  • Feller G, Arpigny J-L, Narinx E, Gerday C (1997a) Molecular adaptations of enzymes from psychrophilic organisms. Comp Biochem Physiol 118:495–499

    Article  Google Scholar 

  • Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997b) Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191

    Article  PubMed  CAS  Google Scholar 

  • Feller G, D’Amico S, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanktis. Biochemistry 38:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  PubMed  CAS  Google Scholar 

  • Garsoux G, Lamotte-Brasseur J, Gerday C, Feller G (2004) Kinetic and structural optimisation to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Jonsson ZO, van Petegem F, Chessa J-P, van Beeumen J, Hubscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins at low temperatures. Eur J Biochem 267:3502–3512

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures i psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. TIBTECH 18:103–107

    Article  CAS  Google Scholar 

  • Giver L, Gershenson A, Freskgard P-A, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci USA 95(4):12809–12813

    Google Scholar 

  • Gorfe AA, Bransdal BO, Leiros HK, Helland R, Smalas AO (2000) Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site. Proteins 40:207–217

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsdottir A (2002) Cold-adapted and mesophilic brachyurins. Biol Chem 383:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Heidarsson PO, Sigurdsson ST, Asgeirsson B (2009) Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 276:2725–2735

    Article  PubMed  CAS  Google Scholar 

  • Hess E (1934) Effects of low temperatures on the growth of marine bacteria. Contribs Can Biol Fisheries Ser C 8:491–505

    Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. WB Saunders, Philadelphia

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Oxford University Press, New York

    Google Scholar 

  • Homchaudhuri L, Sarma N, Swaminathan R (2006) Effect of crowding by dextrans and ficols on the rate of alkaline phosphatase-catalysed hydrolysis: a size-dependent investigation. Biopolymers 83:477–486

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx J-C, Sonan G, Zeng Y, Feller G, Gerday C (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98:317–330

    PubMed  CAS  Google Scholar 

  • Huston AL, Haeggström JZ, Feller G (2008) Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase. Biochim Biophys Acta 1784:1865–1872

    Article  PubMed  CAS  Google Scholar 

  • Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23:97–108

    PubMed  CAS  Google Scholar 

  • Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, Cho YJ (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767

    Article  PubMed  CAS  Google Scholar 

  • Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5 end-labelling of nucleic acid. Proc Natl Acad Sci USA 81:6691–6695

    Article  PubMed  CAS  Google Scholar 

  • Koutsiolis D, Wang E, Tzanodaskalaki M, Nikiforaki D, Deli A, Feller G, Heikinheimo P, Bouriotis V (2008) Directed evolution on the colddapted properties of TAB 5 alkaline phosphatase. Protein Eng 21:319–327

    Article  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374

    Article  PubMed  CAS  Google Scholar 

  • Leiros HK, Willassen NP, Smalas AO (2000) Structural comparisonof psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus mohua) reveals cold-adaptation features. Acta Crystallogr D Biol Crystallogr 59:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne T, Baise E, Feller G, Bouriotis V, Gerday C (2001a) Enzyme activity determination on macromolecular substrates by isothermal calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta 1545:349–356

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne T, Zoidakis J, Vorgias E, Feller G, Gerday C, Bouriotis V (2001b) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310:291–297

    Article  PubMed  CAS  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Marshall CJ (1997) Cold-adapted enzymes. TIBTECH 15:359–363

    Article  CAS  Google Scholar 

  • Marx J-C, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304

    Article  PubMed  CAS  Google Scholar 

  • Matsuura A, Yao M, Aizawa T, Koganesawa N, Masaki K, Miyazawa M, Demura M, Tanaka I, Kawano K, Nitta K (2002) Structural analysis of an insect lysozyme exhibiting catalytic efficiency at low temperature. Biochemistry 41:12086–12092

    Article  PubMed  CAS  Google Scholar 

  • Merlino A, Russo Kraus I, Castellano I, De venditis E, Rossi B, Conte M, Vergara A, Sica F (2010) Structure and flexibility in cold-adapted iron superoxide dismutases: the case of the enzyme isolated from Pseudoalteromonas haloplanktis. J Struct Biol 172:343–352

    Google Scholar 

  • Miyazaki K, Wintrode PL, Grayling RA, Rubigh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Moe E, Leiros I, Rijse EK, Olufsen M, Lanes O, Smalas A, Willassen NP (2004) Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase. J Mol Biol 343:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Narinx E, Baise E, Gerday C (1997) Subtilisin from antarctic bacteria: characterisation and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Prot Engineer 10:1271–1279

    Article  CAS  Google Scholar 

  • Pace CN, Laurents DV (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28:2520–2525

    Article  PubMed  CAS  Google Scholar 

  • Papaleo E, Olufsen M, de Gioia L, Bransdal BO (2007) Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. J Mol Graph Model 26:93–103

    Article  PubMed  CAS  Google Scholar 

  • Papaleo E, Pasi M, Tiberti M, de Gioia L (2011) Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insight into distal effects induced by the mutations. PLoS ONE 6:e24214

    Article  PubMed  CAS  Google Scholar 

  • Paredes DI, Watters K, Pitman DJ, Bystrff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11:42

    Article  PubMed  CAS  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Clayessens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79:1089–1108

    Article  PubMed  CAS  Google Scholar 

  • Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  PubMed  CAS  Google Scholar 

  • Roman EA, Faraj SE, Cousido-Siah A, Mitscler A, Podjarny A, Santos J (2013) Frataxin from Psychromonas ingrahmii as a model to study stability modulation within the CYaY protein family. Biochim Biophys Acta 1834:1168–1180

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (2000) Towards a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  PubMed  CAS  Google Scholar 

  • Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361

    Article  PubMed  CAS  Google Scholar 

  • Santarossa G, Gatti-Lafranconi P, Alquati C, DeGioia L, Alberghina L, Fantucci P, Lotti M (2005) Mutations in the «lid» region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett 579:2383–2386

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Watanabe S, Yamaoka N, Takada Y (2008) Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme. Extremophiles 12:107–117

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen S (1902) Ueber einige psychrophile Mikrooganismen und ihr Vorkommen. Centr Bakteriol Parasitenk Abt II 9:145–147

    Google Scholar 

  • Serrano L, Fersht AR (1989) Capping and alpha-helix stability. Nature 342:296–299

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Ann Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Smalas AO, Leiros HK, OS V, Willassen NP (2000) Cold-adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (1977) Temperature as a selective factor in protein evolution: the adaptational strategy of compromise. J Exp Zool 194:175–188

    Article  Google Scholar 

  • Somero GN, Low PS (1976) Temperature: a «shaping force» in protein evolution. Biochem Soc Symp 41:33–42

    PubMed  CAS  Google Scholar 

  • Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Mundo RR, Lopez-Zavala AA, garcia-Orozco KD, Arvizu AA, Velazquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14:774–778

    Google Scholar 

  • Spiwok V, Lipovova P, Skalova T, Duskova J, Dohnalek J, Hasek J, Russell N, Kralova B (2007) Cold-active enzymes studied by comparative molecular dynamics simulation. J Mod Model 13:485–497

    Article  CAS  Google Scholar 

  • Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I, Schneider GJ, Natali F, Artmann GM, Zaccai G (2012) Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. J R Soc Interface 7:2845–2855

    Article  CAS  Google Scholar 

  • Sun-Yong K, Kwang-Yeon H, Sung-Hou K, Ha-Chin S, Ye-Sun H, Yunge C (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767

    Article  Google Scholar 

  • Suzuki T, Yamamoto K, Tada H, Uda K (2012) Cold-adapted features of arginine kinase from the deep-sea Calyptogena kaikoi. Mar Biotechnol 14:294–303

    Article  PubMed  CAS  Google Scholar 

  • Svingor A, Kardos J, Hajdju I, Nemeth A, Zavodszky P (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 276:28121–28125

    Article  PubMed  CAS  Google Scholar 

  • Taguchi S, Ozaki A, Momose H (1998) Engineering of a cold-adapted protease by sequential random mutagenesis and a screening system. Appl Environ Microbiol 64:492–495

    PubMed  CAS  Google Scholar 

  • Taguchi S, Ozaki A, Nonaka T, Momose H (1999) A cold-adapted protease engineered by experimental evolution system. J Biochem 126:689–693

    Article  PubMed  CAS  Google Scholar 

  • Talla-Singh D, Stites WE (2008) Refinement of noncalorimetric determination of the change in heat capacity, ΔCp, of protein unfolding and validation across a wide temperature range. Proteins 71:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Tiberti M, Papaleo E (2011) Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 174:69–83

    Article  PubMed  CAS  Google Scholar 

  • Tindbaek N, Svendsen A, Oestezrgaard PR, Draborg H (2004) Engineering a substrate-specific cold-adapted subtilisin. Protei Eng Des Sel 17:149–156

    Article  CAS  Google Scholar 

  • Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254:356–362

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus G (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151:1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta 1549:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisemesser EZ, Kern D (2004) Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nat Struct Mol Biol 11:945–949

    Article  PubMed  CAS  Google Scholar 

  • Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ (2009) Cold adaptation of zinc metalloprotease in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 284:9257–9269

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Feller G, Gerday C, Glansdorff N (2003) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161–2168

    Article  PubMed  CAS  Google Scholar 

  • Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site directed mutagenesis. Biotechnol Bioeng 104:862–870

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gerday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerday, C. (2014). Fundamentals of Cold-Active Enzymes. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_15

Download citation

Publish with us

Policies and ethics