Advertisement

An Adaptive Comprehensive Learning Bacterial Foraging Optimization for Function Optimization

  • Lijing Tan
  • Hong Wang
  • Xiaoheng Liang
  • Kangnan Xing
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

This paper proposes a variant of the bacterial foraging optimization (BFO) algorithm with time-varying chemotaxis step length and comprehensive learning strategy, namely Adaptive Comprehensive Learning Bacterial Foraging Optimization (ALCBFO). An adaptive non-linearly decreasing modulation model is used to balance the exploration and exploitation. The comprehensive learning mechanism is adopted to maintain the diversity of the bacterial population and thus alleviates the premature convergence. Compared with the classical GA, PSO, the original BFO and two improved BFOs (BFO-LDC and BFO-NDC), the proposed ACLBFO shows significantly better performance in solving multimodal problems.

Keywords

Bacterial foraging optimization (BFO) adaptive chemotaxis step comprehensive learning mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 52–67 (2002)Google Scholar
  2. 2.
    Panigrahi, B.K., Pandi, V.R.: Bacterial foraging optimization: Nelder-Mead hybrid algorithm for economic load dispatch. IET Generation Transmission & Distribution 2(4), 556–565 (2008)CrossRefGoogle Scholar
  3. 3.
    Kou, P.G., Zhou, J.Z., He, Y.Y., Xiang, X.Q., Li, C.S.: Optimal PID governor tuning of hydraulic turbine generators with bacterial foraging particle swarm optimization algorithm. Proceedings of the Chinese Society of Electrical Engineering 29(26), 101–106 (2009)Google Scholar
  4. 4.
    Niu, B., Fan, Y., Xiao, H., Xue, B.: Bacterial foraging based approaches to portfolio optimization with liquidity risk. Neurocomputing 98(3), 90–100 (2012)CrossRefGoogle Scholar
  5. 5.
    Okaeme, N.A., Zanchetta, P.: Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Transactions on Industrial Informatics 9(2), 668–678 (2013)CrossRefGoogle Scholar
  6. 6.
    Niu, B., Wang, H.: Bacterial colony optimization. Discrete Dynamics in Nature and Society, 1–28 (2012)Google Scholar
  7. 7.
    Niu, B., Fan, Y., Zhao, P., Xue, B., Li, L., Chai, Y.J.: A novel bacterial foraging optimizer with linear decreasing chemotaxis step. In: 2nd International Workshop on Intelligent Systems and Applications (ISA), pp. 1–4 (2010)Google Scholar
  8. 8.
    Niu, B., Fan, Y., Wang, H.: Novel bacterial foraging optimization with time-varying chemotaxis step. International Journal of Artificial Intelligence, 257–273 (2011)Google Scholar
  9. 9.
    Niu, B., Wang, H., Tan, L.J., Li, L.: Improved BFO with adaptive chemotaxis step for global optimization. In: International Conference on Computational Intelligence and Security (CIS), pp. 76–80 (2011)Google Scholar
  10. 10.
    Liang, J.J., Qin, A.K., Suganthan, P.N.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  11. 11.
    Ashlock, D.: Evolutionary computation for modeling and optimization. Springer, New York (2006)zbMATHGoogle Scholar
  12. 12.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the IEEE Congress Evolutionary Computation, pp. 1945–1950 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lijing Tan
    • 1
  • Hong Wang
    • 2
  • Xiaoheng Liang
    • 1
  • Kangnan Xing
    • 2
  1. 1.Management SchoolJinan UniversityGuangzhouChina
  2. 2.College of ManagementShenzhen UniversityShenzhenChina

Personalised recommendations