Advertisement

Segmentation of Slap Fingerprint Images

  • Kamlesh Tiwari
  • Joyeeta Mandal
  • Phalguni Gupta
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

This paper proposes a novel technique to segment fingerprints from 4-slap image. Black pixels of down scaled and binarized slap images are subjected to experience a mutual superposition attractive force which is inversely proportional to the square of distance. Pixels having high force are grouped based on their force angles, and adjacent connected groups are merged to form components. These components are used to identify hand and to label fingers. The technique have been tested on IITK-Rural and IITK-Student databases and has achieved high segmentation accuracy of 96.80% and 99.2% respectively.

Keywords

Biometrics Fingerprint Minutiae Slap Scanner Segmentation ROC curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moenssens, A.: Fingerprint Techniques. Chilton Book Company (1971)Google Scholar
  2. 2.
    Singh, N., Tiwari, K., Nigam, A., Gupta, P.: Fusion of 4-slap fingerprint images with their qualities for human recognition. In: World Congress on Information and Communication Technologies (WICT), pp. 925–930 (2012)Google Scholar
  3. 3.
    Tiwari, K., Arya, D.K., Gupta, P.: Designing palmprint based recognition system using local structure tensor and force field transformation for human identification. Neurocomputing 6839, 602–607 (2012)Google Scholar
  4. 4.
    Ulery, B., Hickline, A., Watson, C., Indovina, M., Kwong, K.: Slap fingerprint segmentation evaluation. slapseg04 analysis report (2005)Google Scholar
  5. 5.
    Lo, P., Sankar, P.: Slap print segmentation system and method, US Patent 7, 072, 496 (2006)Google Scholar
  6. 6.
    Hodl, R., Ram, S., Bischof, H., Birchbauer, J.: Slap fingerprint segmentation. In: Computer Vision Winter Workshop (2009)Google Scholar
  7. 7.
    Yong-liang, Z., Yan-miao, L., Hong-tao, W., Ya-ping, H., Gang, X., Fei, G.: Principal axis and crease detection for slap fingerprint segmentation. In: 17th IEEE International Conference on Information Processing (ICIP), pp. 3081–3084. IEEE (2010)Google Scholar
  8. 8.
    Zhang, Y.L., Xiao, G., Li, Y.M., Wu, H.T., Huang, Y.P.: Slap fingerprint segmentation for live-scan devices and ten-print cards. In: International Conference on Pattern Recognition (ICPR 2010), pp. 1180–1183 (2010)Google Scholar
  9. 9.
    Singh, N., Nigam, A., Gupta, P., Gupta, P.: Four slap fingerprint segmentation. In: Huang, D.-S., Ma, J., Jo, K.-H., Gromiha, M.M. (eds.) ICIC 2012. LNCS, vol. 7390, pp. 664–671. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Gupta, P., Gupta, P.: Slap fingerprint segmentation. In: Biometrics: Theory, Applications and Systems (BTAS), pp. 189–194 (2012)Google Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285-296), 23–27 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kamlesh Tiwari
    • 1
  • Joyeeta Mandal
    • 1
  • Phalguni Gupta
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations