Advertisement

Face Recognition Based on Random Weights Network and Quasi Singular Value Decomposition

  • Zhenghua Zhou
  • Jianwei Zhao
  • Feilong Cao
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

This paper proposes a novel approach of feature extraction called quasi singular values decomposition (QSVD), which can be used to obtain the algebraic features of the original images. An effective classifier, named random weights network (RWN), is applied to improve the learning speed. Integrating QSVD with RWN, fast discrete curvelet transform (FDCT), and 2-dimensional principal component analysis (2DPCA), a new method for face recognition is designed. The experimental results illustrate that the proposed method has an outstanding superiority in the aspects of separability and recognition rate.

Keywords

Face recognition Quasi singular value decomposition Random weights network Fast discrete curvelet transform 2DPCA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast Discrete Curvelet Transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Donoho, D.L., Duncan, M.R.: Digital Curvelet Transform: Strategy, Implementation and Experiments. In: Proceedings of SPIE, vol. 4056, pp. 12–30 (2000)Google Scholar
  3. 3.
    Horn, R.A., Johnson, C.R.: Matrix Analysis, pp. 411–455. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  4. 4.
    Huang, G.B., Zhu, Q., Siew, C.: Extreme Learning Machine: Theory and Applications. Neurocomputing 70(1-3), 489–501 (2006)CrossRefGoogle Scholar
  5. 5.
    Hong, Z.: Algebraic Feature Extraction of Image for Recognition. Pattern Recognition 24, 211–219 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mohammed, A.A., Minhas, R., Wu, Q.M.J., Sid-Ahme, M.A.: Human Face Recognition Based on Multidimensional PCA and Extreme Learning Machine. Pattern Recognition 44, 2588–2597 (2011)zbMATHCrossRefGoogle Scholar
  7. 7.
    Mandal, T., Wu, Q.M.J., Yuan, Y.: Curvelet Based Face Recognition via Dimension Reduction. Signal Processing 89(3), 2345–2353 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Mc Loone, S., Irwin, G.: Improving Neural Network Training Solutions Using Regularization. Neurocomputing 37, 71–90 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Wang, Y.H., Tan, T.N., Zhu, Y.: Face Identification Based on Singular Values Decomposition and Data Fusion. Chinese J. Comput. 23(6), 23–26 (2000)Google Scholar
  10. 10.
    Zhao, J.W., Wang, Z.H., Park, D.S.: Online Sequential Extreme Learning Machine with Forgetting Mechanism. Neurocomputing 87, 79–89 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhang, D., Zhou, Z.H.: 2DTPCA: Two-directional Two-dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing 69, 224–231 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhenghua Zhou
    • 1
  • Jianwei Zhao
    • 1
  • Feilong Cao
    • 1
  1. 1.Department of MathematicsChina Jiliang UniversityHangzhouChina

Personalised recommendations