Advertisement

Fast Wavelet Transform Based on Spiking Neural Network for Visual Images

  • Zhenmin Zhang
  • Qingxiang Wu
  • Zhiqiang Zhuo
  • Xiaowei Wang
  • Liuping Huang
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

The functionalities of spiking neurons can be applied to deal with biological stimuli and explain complicated intelligent behaviorsof the brain. Wavelet transform is a powerful time-frequency analysis tool that can efficiently compress image and extract image features. In this article, a spiking neural network combined with the ON/OFF neuron arrays associated with the human visual system is proposed to perform the fast wavelet transform for visual images. The simulation results show that the spiking neural network can preserve the key features of visual images very well.

Keywords

Spiking neural network human visual system fast wavelet transform visual image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500–544 (1952)Google Scholar
  2. 2.
    Muller, E.: Simulation of High-Conductance States in Cortical Neural Networks. Masters thesis. University of Heidelberg. HDKIP-03-22 (2003)Google Scholar
  3. 3.
    Masland, R.H.: The fundamental plan of the retina. Nature Neuroscience 4(9), 877–886 (2001)CrossRefGoogle Scholar
  4. 4.
    Taylor, W.R., Vaney, D.I.: New directions in retinal research. Trends in Neurosciences 26(7), 379–385 (2003)CrossRefGoogle Scholar
  5. 5.
    Kandel, E.R., Shwartz, J.H.: Principles of Neural Science. Edward Amold (Publishers) Ltd. (1981)Google Scholar
  6. 6.
    Demb, J.B.: Cellular mechanisms for direction selectivity in the retina. Neuron. 55(2), 179–186 (2007)CrossRefGoogle Scholar
  7. 7.
    Nelson, R., Kolb, H.: On and Off Pathways in the Vertebrate Retina and Visual System. MIT Press, Cambridge (2003)Google Scholar
  8. 8.
    Wu, Q.X., McGinnity, T.M., Maguire, L., Ghani, A., Condell, J.: Spiking Neural Network Performs Discrete Cosine Transform for Visual Images. Emerging Intelligent Computing Technology and Applications: With Aspects of Artificial Intelligence 5755, 21–29 (2009)CrossRefGoogle Scholar
  9. 9.
    Daubechies, I.: Ten Lectures On Wavelets. Society for Industrial and Applied Mathematics 61 (1992)Google Scholar
  10. 10.
    Chui, C.K.: An Introduction to Wavelets. Academic Press, New York (1992)zbMATHGoogle Scholar
  11. 11.
    Liu, C.L.: A Tutorial of the Wavelet Transform (2010), http://disp.ee.ntu.edu
  12. 12.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation 11, 674–693 (1989)Google Scholar
  13. 13.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (2008)Google Scholar
  14. 14.
    Wu, Q.X., McGinnity, T.M., Maguire, L., Belatreche, A., Glackin, B.: 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism. Neural Networks 21(9), 1318–1327 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wu, Q.X., McGinnity, M., Maguire, L., Glackin, B., Belatreche, A.: Learning Mechanisms in Networks of Spiking Neurons. In: Chen, K., Wang, L. (eds.) Trends in Neural Computation. SCI, vol. 35, pp. 171–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Wu, Q., McGinnity, M., Maguire, L., Belatreche, A., Glackin, B.: Edge Detection Based on Spiking Neural Network Model. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS (LNAI), vol. 4682, pp. 26–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Wu, Q.X., McGinnity, T.M., Maguire, L.P., Glackin, B., Belatreche, A.: Learning under weight constraints in networks of temporal encoding spiking neurons. Neurocomputing 69(16-18), 1912–1922 (2006)CrossRefGoogle Scholar
  18. 18.
    Wu, Q.X., Cai, R., McGinnity, T.M., Maguire, L., Harkin, J.: Remembering Key Features of Visual Images based on Spike Timing Dependent Plasticity of Spiking Neurons (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhenmin Zhang
    • 1
  • Qingxiang Wu
    • 1
  • Zhiqiang Zhuo
    • 1
  • Xiaowei Wang
    • 1
  • Liuping Huang
    • 1
  1. 1.College of Photonic and Electronic EngineeringFujian Normal UniversityFuzhouChina

Personalised recommendations