Advertisement

An Effective Parameter Estimation Approach for the Inference of Gene Networks

  • Yu-Ting Hsiao
  • Wei-Po Lee
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

Constructing genetic regulatory networks from expression profiles is one of the most important issues in systems biology research. To automate the procedure of network construction, this work presents an integrated approach for network inference, in which the parameter identification and parameter optimization techniques are developed to deal with the scalability and network robustness problems, respectively. To validate the proposed approach, experiments have been conducted on several artificial and real datasets. The results show that our approach can be used to infer robust gene networks with desired system behaviors successfully.

Keywords

gene network inference parameter identification parameter optimization structural information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall (2006)Google Scholar
  2. 2.
    Sîrbu, A., Ruskin, H.J., Crane, M.: Comparison of Evolutionary Algorithms in Gene Regulatory Network Model Inference. BMC Bioinformatics 11, 59 (2010)CrossRefGoogle Scholar
  3. 3.
    Lee, W.P., Hsiao, Y.T.: Inferring Gene Regulatory Networks Using A Hybrid GA-PSO Approach With Numerical Constraints and Network Decomposition. Information Sciences 188, 80–99 (2012)CrossRefGoogle Scholar
  4. 4.
    Mussel, C., Hopfensitz, M., Kestler, H.A.: BoolNet-an R Package for Generation, Reconstruction and Analysis of Boolean networks. Bioinformatics 26, 1378 (2010)CrossRefGoogle Scholar
  5. 5.
    Hsiao, Y.-T., Lee, W.-P.: Evolving Gene Regulatory Networks: A Sensitivity-Based Approach. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS (LNBI), vol. 6840, pp. 508–513. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Cho, K., Shin, S., Kolch, W., Wolkenhauer, O.: Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using A Monte Carlo Method: A Case Study for The TNFα-mediated NF-kB Signal Transduction Pathway. Simulation 79, 726–729 (2003)CrossRefGoogle Scholar
  7. 7.
    Cao, H., Kang, L., Chen, Y.: Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming. Genetic Programming and Evolvable Machines 1, 309–337 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning Numbers to The Arrows: Parameterizing A Gene Regulation Network by Using Accurate Expression Kinetics. PNAS 99, 10555–10560 (2002)CrossRefGoogle Scholar
  9. 9.
    Bansal, M., Gatta, G.D., di Bernardo, D.: Inference of Gene Regulatory Networks and Compound Mode of Action from Time Course Gene Expression Profiles. Bioinformatics 22, 815–822 (2006)CrossRefGoogle Scholar
  10. 10.
    Kimura, S., Sonoda, K., Yamane, S., Maeda, H., Matsumura, K., Hatakeyama, M.: Function Approximation Approach to The Inference of Reduced NGnet Models of Genetic Networks. BMC Bioinformatics 9, 23 (2008)CrossRefGoogle Scholar
  11. 11.
    Kabir, M., Noman, N., Iba, H.: Reversely Engineering Gene Regulatory Network from Microarray Data Using Linear Time-variant Model. BMC Bioinformatics 11, S56 (2010)Google Scholar
  12. 12.
    Bazil, J.N., Qi, F., Beard, D.A.: A parallel algorithm for reverse engineering of biological networks. Integrative Biology 3, 1145–1145 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu-Ting Hsiao
    • 1
  • Wei-Po Lee
    • 1
  1. 1.Department of Information ManagementNational Sun Yat-sen UniversityKaohsiungTaiwan

Personalised recommendations