Advertisement

A Simple but Robust Complex Disease Classification Method Using Virtual Sample Template

  • Shu-Lin Wang
  • Yaping Fang
  • Jianwen Fang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

With the advance of high throughput technologies, genomic or proteomic data are accumulated rapidly, demanding robust computational algorithms for large-scale biological data analysis and mining. In this work we propose a simple classification method based on virtual sample template (VST) and three distance measurements. Each VST corresponds to a subclass in training set. The label of a test sample is simply determined by measuring the similarity between the test sample and each VST using the three distance measurements. The test sample is assigned to the subclass of the VST with the minimum distance. Our experimental results indicate that the proposed method is robust in predicative performance. Compared with other common classification methods of complex disease, our method is simpler and often with improved classification performance.

Keywords

Gene expression profiles autoantibody profiles complex disease classification virtual sample template correlation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanczar, B., Dougherty, E.R.: On the Comparison of Classifiers for Microarray Data. Current Bioinformatics 5, 29–39 (2010)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Li, X., Zhang, S.: Neighborhood rough set model based gene selection for multi-subtype tumor classification. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 146–158. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, S.L., Li, X.L., Fang, J.W.: Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification. Bmc Bioinformatics 13 (2012)Google Scholar
  4. 4.
    Nagele, E., Han, M., DeMarshall, C., Belinka, B., Nagele, R.: Diagnosis of Alzheimer’s Disease Based on Disease-Specific Autoantibody Profiles in Human Sera. PLoS One 6 (2011)Google Scholar
  5. 5.
    Wang, S.L., Zhu, Y.H., Jia, W., Huang, D.S.: Robust Classification Method of Tumor Subtype by Using Correlation Filters. IEEE-ACM Transactions on Computational Biology and Bioinformatics 9, 580–591 (2012)CrossRefGoogle Scholar
  6. 6.
    Asyali, M.H., Colak, D., Demirkaya, O., Inan, M.S.: Gene expression profile classification: A review. Current Bioinformatics 1, 55–73 (2006)CrossRefGoogle Scholar
  7. 7.
    Sharma, A., Paliwal, K.K.: Cancer classification by gradient LDA technique using microarray gene expression data. Data Knowl. Eng. 66, 338–347 (2008)CrossRefGoogle Scholar
  8. 8.
    Deng, L., Ma, J.W., Pei, J.: Rank sum method for related gene selection and its application to tumor diagnosis. Chinese Science Bulletin 49, 1652–1657 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Wang, S.-L., You, H.-Z., Lei, Y.-K., Li, X.-L.: Performance Comparison of Tumor Classification Based on Linear and Non-linear Dimensionality Reduction Methods. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 291–300. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., de Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002)CrossRefGoogle Scholar
  11. 11.
    Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., Ray, T.S., Koval, M.A., Last, K.W., Norton, A., Lister, T.A., Mesirov, J., Neuberg, D.S., Lander, E.S., Aster, J.C., Golub, T.R.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8, 68–74 (2002)CrossRefGoogle Scholar
  12. 12.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  13. 13.
    Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7, 673–679 (2001)CrossRefGoogle Scholar
  14. 14.
    Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J.P., Poggio, T., Gerald, W., Loda, M., Lander, E.S., Golub, T.R.: Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 98, 15149–15154 (2001)CrossRefGoogle Scholar
  15. 15.
    Han, M., Nagele, E., DeMarshall, C., Acharya, N., Nagele, R.: Diagnosis of Parkinson’s Disease Based on Disease-Specific Autoantibody Profiles in Human Sera. PLoS One 7 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shu-Lin Wang
    • 1
  • Yaping Fang
    • 1
  • Jianwen Fang
    • 1
  1. 1.Applied Bioinformatics LaboratoryThe University of KansasLawrenceUSA

Personalised recommendations