Advertisement

Automated Model Selection and Parameter Estimation of Log-Normal Mixtures via BYY Harmony Learning

  • Yifan Zhou
  • Zhijie Ren
  • Jinwen Ma
Part of the Communications in Computer and Information Science book series (CCIS, volume 375)

Abstract

Bayesian Ying-Yang (BYY) harmony learning system is a newly developed framework for statistical learning. Via the BYY harmony leaning on finite mixtures, model selection can be made automatically during parameter learning. In this paper, this automated model selection learning mechanism is extended to logarithmic normal (log-normal) mixtures. Actually, an adaptive gradient BYY harmony learning algorithm is proposed for log-normal mixtures. It is demonstrated by the experiments that the proposed BYY harmony learning algorithm not only automatically determines the number of actual log-normal distributions in the sample dataset, but also leads to a satisfactory estimation of the parameters in the original log-normal mixture.

Keywords

Bayesian Ying-Yang (BYY) harmony learning Automated model selection Parameter estimation Logarithmic normal (log-normal) mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mclachlan, G.J., Peel, D.: Finite mixture Models. John Wiley & Sons, New York (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. on Automatic Control AC-19, 716–723 (1974)Google Scholar
  3. 3.
    Scharz, G.: Estimating the dimension of a model. The Annals of Statistics 6, 461–464 (1978)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 381–395 (2002)CrossRefGoogle Scholar
  5. 5.
    Xu, L.: BYY harmony learning, structural RPCL, and topological self-organizing on mixture modes. Neural Networks 15, 1231–1237 (2002)CrossRefGoogle Scholar
  6. 6.
    Ma, J., Wang, T., Xu, L.: A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 56, 481–487 (2004)CrossRefGoogle Scholar
  7. 7.
    Ma, J., Wang, L.: BYY harmony learning on finite mixture: adaptive gradient implementation and a floating RPCL mechanism. Neural Processing Letters 24, 19–40 (2006)CrossRefGoogle Scholar
  8. 8.
    Ma, J., Liu, J.: The BYY annealing learning algorithm for Gaussian mixture with automated model selection. Pattern Recognition 40(7), 2029–2037 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ma, J., Liu, J., Ren, Z.: Parameter estimation of Poisson mixture with automated model selection through BYY harmony learning. Pattern Recognition 42(11), 2659–2670 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Ren, Z., Ma, J.: BYY Harmony Learning on Weibull Mixture with Automated Model Selection. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds.) ISNN 2008, Part I. LNCS, vol. 5263, pp. 589–599. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yifan Zhou
    • 1
  • Zhijie Ren
    • 1
  • Jinwen Ma
    • 1
  1. 1.Department of Information Science, School of Mathematical Sciences and LMAMPeking UniversityBeijingChina

Personalised recommendations