Skip to main content

Feed Forward Back Propagation Neural Networks to Classify Freeway Traffic Flow State

  • Conference paper
  • First Online:
Traffic and Granular Flow '11

Abstract

Analyses on traffic flow require accurate time-varying local traffic density information in order to effectively determine inflows to and outflows from freeway segments in several aspects of network traffic control. It is essential to specify the flow state, equivalently to derive density variable with the corresponding flow-rate measure, from primary traffic variables in order to provide accurate input to real-time traffic management strategies. In this paper, a study on the flow state specification process that employs feed forward back propagation neural network method to map sectional lane based density measure with raw traffic data collected from successive remote microwave sensor units mounted along a segment existing on the freeway network of Istanbul, is summarized. Classification of traffic flow states and matching the corresponding real-time flow state is obtained dynamically inputting raw flow measures simultaneously to neural density mapping and traffic flow modeling processes. The approach is promising in capturing instantaneous changes on flow states and may be utilized within intelligent management strategies such as incident control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Zhong, P. Lingras, and S. Sharma, Estimation of missing traffic counts using factor, genetic, neural, and regression techniques, Transp. Res. Part C: Emerging Technologies, vol. 12, pp. 139–166, 2004.

    Article  Google Scholar 

  2. L. Qu, L. Li, Y. Zhang, and J. Hu, PPCA-based missing data imputation for traffic flow volume: a systematical approach, IEEE Transactions on Intelligent Transportation Systems, vol. 10, pp. 512–522, 2009.

    Article  Google Scholar 

  3. D.J. Dailey, A statistical algorithm for estimating speed from single loop volume and occupancy measurements, Transportation Research Part B: Methodological, vol. 33, no. 5, pp. 313–322, 1999.

    Article  Google Scholar 

  4. J. Zhanfeng, C. Chao, C., B. Coifman, and P. Varaiya, The PeMS algorithms for accurate, real-time estimates of g-factors and speeds from single-loop detectors, in Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference, pp. 536–541, 2001.

    Google Scholar 

  5. B. Coifman, Improved velocity estimation using single loop detectors, Transp. Res. Part A: Policy and Practice, vol. 35, pp. 863–880, 2001.

    Article  Google Scholar 

  6. D. Yao, X. Gong, and Y. Zhang, A hybrid model for speed estimation based on single-loop data, in Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, Oct. 3–6, 2004, pp. 205–209, 2004.

    Google Scholar 

  7. M.L. Hazelton, Estimating vehicle speed from traffic count and occupancy data, Journal of Data Science, vol. 2, pp. 231–244, 2004.

    Google Scholar 

  8. L. Muoz, X. Sun, R. Horowitz, and L. Alvarez, Traffic density estimation with the Cell Transmission Model, in Proceedings of the 2003 American Control Conference, Denver, Colorado, vol. 5, pp. 3750–3755, 2003.

    Google Scholar 

  9. X. Sun, L. Mufioz, and R. Horowitz, Highway traffic state estimation using improved mixture Kalman filters for effective ramp metering control, in Proceedings of the 42nd IEEE Conference on Decision and Control, Maul, Hawaii USA, vol. 6, pp. 6333–6338, 2003.

    Google Scholar 

  10. B. Coifman, Estimating density and lane inflow on a freeway segment, Transp. Res. Part A: Policy and Practice, vol. 37, pp. 689–701, 2003.

    Article  Google Scholar 

  11. US Department of Transportation, Federal Highway Administration, Traffic Detector Handbook, 3rd edition, vol. I, publication no. FHWA-HRT-06-108, 2006.

    Google Scholar 

  12. L.A. Klein, Sensor Technologies and Data Requirements for ITS, Artech House, Norwood, MA, 2001.

    Google Scholar 

  13. G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., vol. 2, pp. 303–314, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw., vol. 2, pp. 359–366, 1989.

    Article  Google Scholar 

  15. R. C. Williamson and U. Hemke, Existence and uniqueness results for neural network approximations, IEEE Trans. Neural Netw., vol. 6, pp. 2–13, 1995.

    Article  Google Scholar 

  16. D.E. Rumelhart, G.E. Hinton, J.E. Williams, Learning internal representations by error propagation, in Parallel Distrubuted Processing-Explorations in the Microstructure of Cognition, vol. 1, D.E. Rumelhart and J.L. McClelland Eds. Cambridge, Mass.: MIT Press, 1986.

    Google Scholar 

  17. T. Poggio and F. Girosi, Networks for approximation and learning, in Proc. IEEE vol. 9, pp. 1481–1497, 1990.

    Article  Google Scholar 

  18. D. F. Specht, A general regression neural network, IEEE trans. neural netw., vol. 2, pp. 568–576, Nov. 1991.

    Article  Google Scholar 

  19. H. B. Celikoglu, A dynamic network loading model for traffic dynamics modeling, IEEE Transactions on Intelligent Transportation Systems, vol. 8, pp. 575–583, 2007.

    Article  Google Scholar 

  20. M. J. Lighthill, G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, in Proc. Roy. Soc. London, part A, vol. 229, pp. 317–345, 1955.

    Google Scholar 

  21. P. I. Richards, Shock waves on the highway, Operations Research, vol. 4, pp. 42–51, 1956.

    Article  MathSciNet  Google Scholar 

  22. Transportation Research Board, Highway Capacity Manual 2000, Washington DC, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Deniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deniz, O., Celikoglu, H.B. (2013). Feed Forward Back Propagation Neural Networks to Classify Freeway Traffic Flow State. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_45

Download citation

Publish with us

Policies and ethics