Skip to main content

Neural Spatial Interaction Models: Network Training, Model Complexity and Generalization Performance

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7974))

Abstract

Spatial interaction models approximate mean interaction frequencies between origin and destination locations by using origin-specific, destination-specific and spatial separation information. The focus is on models that are based on the theory of feedforward neural networks. This contribution considers the functional form of neural spatial interaction models, including the specification of the activation functions, and discusses the problem of network training within a maximum likelihood framework that involves the solution of a non-linear optimization problem. This requires the evaluation of the log-likelihood function with respect to the network parameters. Overfitting is a problem that is likely to occur in neural spatial interaction models. To avoid this problem the contribution recommends controlling the model complexity either by regularization or by early stopping in network training. A bootstrapping pairs approach with replacement may be adopted to evaluate the generalization performance of the models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldi, P., Chauvin, Y.: Temporal evolution of generalization during learning in linear networks. Neural Computation 3(4), 589–603 (1991)

    Article  Google Scholar 

  • Bergkvist, E.: Forecasting interregional freight flows by gravity models. Jahrbuch für Regionalwissenschaft 20(2), 133–148 (2000)

    Google Scholar 

  • Bergkvist, E., Westin, L.: Estimation of gravity models by OLS estimation, NLS estimation, Poisson and neural network specifications. CERUM Regional Dimensions, WP-6 (1997)

    Google Scholar 

  • Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)

    MATH  Google Scholar 

  • Bishop, C.M.: Neural networks for pattern recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  • Black, W.P.: Spatial interaction modeling using artificial neural networks. Journal of Transportation Geography 3(3), 159–166 (1995)

    Article  Google Scholar 

  • Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B.: The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia (1982)

    Book  Google Scholar 

  • Finnoff, W.: Complexity measures for classes of neural networks with variable weight bounds. In: Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS 1994, vol. 4, pp. 1880–1882. IEEE Press, Piscataway (1991)

    Google Scholar 

  • Fischer, M.M.: Spatial interaction models. In: Warf, B. (ed.) Encyclopedia of Geography, pp. 2645–2647. Sage Publications, London (2010)

    Google Scholar 

  • Fischer, M.M.: Learning in neural spatial interaction models: A statistical perspective. Journal of Geographical Systems 4(3), 287–299 (2002)

    Article  Google Scholar 

  • Fischer, M.M.: Methodological challenges in neural spatial interaction modelling: The issue of model selection. In: Reggiani, A. (ed.) Spatial Economic Science: New Frontiers in Theory and Methodology, pp. 89–101. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Fischer, M.M., Gopal, S.: Artificial neural networks. A new approach to modelling interregional telecommunication flows. Journal of Regional Science 34(4), 503–527 (1994)

    Article  Google Scholar 

  • Fischer, M.M., Leung, Y.: A genetic-algorithm based evolutionary computational neural network for modelling spatial interaction data. The Annals of Regional Science 32(3), 437–458 (1998)

    Article  Google Scholar 

  • Fischer, M.M., Reismann, M.: Evaluating neural spatial interaction modelling by bootstrapping. Networks and Spatial Economics 2(3), 255–268 (2002a)

    Google Scholar 

  • Fischer, M.M., Reismann, M.: A methodology for neural spatial interaction modeling. Geographical Analysis 34(3), 207–228 (2002b)

    Google Scholar 

  • Fischer, M.M., Hlavácková-Schindler, K., Reismann, M.: A global search procedure for parameter estimation in neural spatial interaction modelling. Papers in Regional Science 78(2), 119–134 (1999)

    Article  Google Scholar 

  • Fischer, M.M., Reismann, M., Hlavácková-Schindler, K.: Neural network modelling of constrained spatial interaction flows: Design, estimation and performance issues. Journal of Regional Science 43(1), 35–61 (2003)

    Article  Google Scholar 

  • Funahashi, K.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2(3), 183–192 (1989)

    Article  Google Scholar 

  • Haykin, S.: Neural networks. A comprehensive foundation. Macmillan College Publishing Company, New York (1994)

    MATH  Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–368 (1989)

    Article  Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22(1), 78–86 (1951)

    Article  MathSciNet  Google Scholar 

  • Mozolin, M., Thill, J.-C., Usery, E.L.: Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation. Transportation Research B 34(1), 53–73 (2000)

    Article  Google Scholar 

  • Nijkamp, P., Reggiani, A., Tritapepe, A.: Modelling intra-urban transport flows in Italy. TRACE Discussion Papers TI 96-60/5. Tinbergen Institute, The Netherlands (1996)

    Google Scholar 

  • Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Openshaw, S.: Modelling spatial interaction using a neural net. In: Fischer, M.M., Nijkamp, P. (eds.) Geographic Information Systems, Spatial Modelling, and Policy Evaluation, pp. 147–164. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  • Press, W.H., Teukolky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Reggiani, A., Tritapepe, T.: Neural networks and logit models applied to commuters’ mobility in the metropolitan area of Milan. In: Himanen, V., Nijkamp, P., Reggiani, A. (eds.) Neural Networks in Transport Applications, pp. 111–129. Ashgate, Aldershot (2000)

    Google Scholar 

  • Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y.: Backpropagation: The basic theory. In: Chauvin, Y., Rumelhart, D.E. (eds.) Backpropagation: Theory, Architectures and Applications, pp. 1–34. Lawrence Erlbaum Associates, Hillsdale (1995)

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  • Thill, J.-C., Mozolin, M.: Feedforward neural networks for spatial interaction: Are they trustworthy forecasting tools? In: Reggiani, A. (ed.) Spatial Economic Science: New Frontiers in Theory and Methodology, pp. 355–381. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • Weigend, A.S., Rumelhart, D.E., Huberman, B.A.: Generalization by weight elimination with application to forecasting. In: Lippman, R., Moody, J., Touretzky, D. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 875–882. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, M.M. (2013). Neural Spatial Interaction Models: Network Training, Model Complexity and Generalization Performance. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39649-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39649-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39648-9

  • Online ISBN: 978-3-642-39649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics