Skip to main content

Mathematical Analysis of Gasification Process Using Boubaker Polynomials Expansion Scheme

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Abstract

In this work, a mathematical model of gasification technology has been developed. The aim of the present paper is to analyze the total Gibbs free energy G(U) of the system during the process which strongly depends on the type of biomass CHMON. In order to reach this goal, the Boubaker Polynomial Expansion Scheme (BPES) is exploited as an efficient optimization protocol. The results lead to find out the optimal values for biomass composition and clearly show that the latter and its substrate ratio influence the free energy trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 2841–2851 (2010)

    Google Scholar 

  2. Baggio, P., Baratieri, M., Fiori, L., Grigiante, M., Avi, D., Tosi, P.: Experimental and modeling analysis of a batch gasification/pyrolysis reactor. Energy Conversion and Management, 1426–1435 (2009)

    Google Scholar 

  3. Bocci, E., Villarini, M., Bove, L., Esposto, S., Gasperini, V.: Modeling Small Scale Solar Powered ORC Unit for Standalone Application. Mathematical Problems in Engineering, art. no. 124280 (2012)

    Google Scholar 

  4. Di Carlo, A., Bocci, E., Naso, V.: Process simulation of a SOFC and double bubbling fluidized bed gasifier power plant. International Journal of Hydrogen Energy 38, 532–542 (2013)

    Article  Google Scholar 

  5. Monarca, D., Colantoni, A., Cecchini, M., Longo, L., Vecchione, L., Carlini, M., Manzo, A.: Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography. Mathematical Problemsin Engineering, art. no. 102914 (2012)

    Google Scholar 

  6. Warnecke, R.: Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy, 489–497 (2000)

    Google Scholar 

  7. Ravikiran, A., Renganathan, T., Pushpavanam, S., Voolapalli, R.K., Cho, Y.S.: Generalized Analysis of Gasifier Performance using Equilibrium Modeling. Industrial and Engineering Chemistry Research, 1601–1611 (2012)

    Google Scholar 

  8. Zhang, K., Chang, J., Guan, Y., Chen, H., Yang, Y., Jiang, J.: Lignocellulosic biomass gasification technology in China. Renewable Energy, 175–184 (2013)

    Google Scholar 

  9. Awojoyogbe, O.B., Boubaker, K.: A solution to Bloch NMR flow equations for the analysis of homodynamic functions of blood flow system using m-Boubaker polynomials. Curr. App. Phys. 9, 278–288 (2009)

    Article  Google Scholar 

  10. Barry, P., Hennessy, A.: Meixner-type results for riordan arrays and associated integer sequences. J. Integer Sequences 13, 1–34 (2010)

    Google Scholar 

  11. Belhadj, A., Bessrour, J., Bouhafs, V., Barrallier, L.: Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion. J. Thermal Analysis Calorimetry 97, 911–920 (2009)

    Article  Google Scholar 

  12. Belhadj, A., Onyango, O., Rozibaeva, V.: Boubaker polynomials expansion scheme-related heat transfer investigation inside keyhole model. J. Thermophys Heat Transf. 23, 639–642 (2009)

    Article  Google Scholar 

  13. Fridjine, S., Amlouk, M.: A new parameter: An ABACUS for optimizing functional materials using the Boubaker polynomials expansion scheme. Modern Phys. Lett. B 23, 2179–2182 (2009)

    Article  MATH  Google Scholar 

  14. Ghanouchi, J., Labiadh, H., Boubaker, K.: An attempt to solve the heat transfert equation in a model of pyrolysis spray using 4q-order m-Boubaker polynomials. Int. J. Heat Technol. 26, 49–53 (2008)

    Google Scholar 

  15. Kumar, A.S.: An analytical solution to applied mathematics-related Love’s equation using the Boubaker polynomials expansion scheme. J. Franklin Institute 347, 1755–1761 (2010)

    Article  MATH  Google Scholar 

  16. Labiadh, H., Boubaker, K.: A Sturm-Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression to the Boubaker polynomials. Diff. Eq. and Cont. Proc. 2, 117–133 (2007)

    MathSciNet  Google Scholar 

  17. Milgram, A.: The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. J. Theoretical Biolog. 271, 157–158 (2011)

    Article  MathSciNet  Google Scholar 

  18. Slama, S., Bessrour, J., Bouhafs, M., Ben, K.B., Num, M.: Heat Transf. Part A. 55, 401–404 (2009)

    Google Scholar 

  19. Slama, S., Bouhafs, M., Ben, K.B., Mahmouda, A.: Boubaker polynomials solution to heat equation for monitoring a3 point evolution during resistance spot welding. Int. J. Technol. 26, 141–146 (2008)

    Google Scholar 

  20. Tabatabaei, S., Zhao, T., Awojoyogbe, O., Moses, F.: Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme. Int. J. Heat Mass Transfer. 45, 1247–1255 (2009)

    Article  Google Scholar 

  21. Yildirim, A., Mohyud-Di, S.T., Zhang, D.H.: Analytical solutions to the pulsed klein-gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES). Computers Math. Appl. 12, 2473–2477 (2010)

    Article  Google Scholar 

  22. Lorente, E., Millan, M., Brandon, N.P.: Use of gassification syngas in SOFC: impact of real tar anode materials. International Journal of Hydrogen Energy 37(8), 7271–7278 (2012)

    Article  Google Scholar 

  23. Zainal, Z.A., Ali, R., Lean, C.H., Seetharamu, K.N.: Prediction of performance of a downdraft gasifier using equilibrium modeling different biomass materials. Energy Conversion and Management 42(12), 1499–1515 (2001)

    Article  Google Scholar 

  24. Ozgur Colpan, C., Yoo, Y., Dincer, I., Hamdullahpur, F.: Thermal modeling and simulation of an integrated solid oxide fuel cell and charcoal gasification system. Environmental Progress and Sustainable Energy 42, 380–385 (2009)

    Article  Google Scholar 

  25. Ragland, K.W., Aerts, D.J.: Properties of Wood for Combustion Analysis. Bioresource Technology 37, 161–168 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colantoni, A., Allegrini, E., Recanatesi, F., Romagnoli, M., Biondi, P., Boubaker, K. (2013). Mathematical Analysis of Gasification Process Using Boubaker Polynomials Expansion Scheme. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics