Skip to main content

Carbon Oxides in Gas Flows and Earth and Planetary Atmospheres: State-to-State Simulations of Energy Transfer and Dissociation Reactions

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7972))

Included in the following conference series:

Abstract

In this paper we illustrate an approach to the study of the molecular collision dynamics, suited for massive calculations of vibrational state-specific collision cross sections and rate constants of elementary gas phase processes involving carbon oxides. These data are used in the theoretical modeling of the Earth and planetary atmospheres and of non-equilibrium reactive gas flows containing the CO2 and CO molecules. The approach is based on classical trajectory simulations of the collision dynamics and on the bond-bond semi-empirical description of the intermolecular interaction potential, that allows the formulation of full dimension potential energy surfaces (the main input of simulations) for small and medium size systems. The bond-bond potential energy surfaces account for the dependence of the intermolecular interaction on some basic physical properties of the colliding partners, including modulations induced by the monomer deformation. The approach has been incorporated into a Grid empowered simulator able to handle the modeling of the CO2 + CO2 collisions, while extensions to other processes relevant for the modeling of gaseous flows and atmospheres, such as CO + CO → C + CO2 and CO2 + N2, are object of current work. Here the case of CO2 + CO2 collisions will be illustrated in detail to exemplify an application of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khalil, M.A., Rasmussen, R.A.: Nature 332, 242 (1988)

    Google Scholar 

  2. Palazzetti, F., Maciel, G.S., Lombardi, A., Grossi, G., Aquilanti, V.: J. Chin. Chem. Soc.-Taip. 59, 1045–1052 (2012)

    Google Scholar 

  3. http://www.astronomy.com/~/link.aspx?_id=9c5fef44-c7a0-4333-baeb-628add917d08

  4. Project Phys4entry FP7242311, http://users.ba.cnr.it/imip/cscpal38phys4entry/activities.html

  5. Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, R.: Plasma kinetics in atmospheric gases. Springer (2000)

    Google Scholar 

  6. Lombardi, A., Ragni, M., De Fernandes, I. F.: Proceedings - 12th International Conference on Computational Science and Its Applications, ICCSA 2012, art. no. 6257613 , pp. 77–82 (2012)

    Google Scholar 

  7. Kustova, E., Nagnibeda, E.: State-to-state theory of vibrational kinetics and dissociation in three-atomic gases. In: Bartel, T., Gallis, M. (eds.) Rarefied Gas

    Google Scholar 

  8. Hirschfelder, J.O.: Intermolecular Forces. Adv. Chem. Phys. 12 (1967)

    Google Scholar 

  9. Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces. Clarendon Press, Oxford (1987); Dynamics, AIP Conference Proceedings, vol. 585, pp. 620–627 (2001)

    Google Scholar 

  10. Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: Phys. Chem. Chem. Phys. 10, 4281 (2008)

    Google Scholar 

  11. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: J. Comp. Chem. 33, 1806 (2012)

    Google Scholar 

  12. Barton, A.E., Chablo, A., Howard, B.J.: Chem. Phys. Lett. 60, 414 (1979); Phys. Chem. Chem. Phys. 100, 4281–4293 (2000)

    Google Scholar 

  13. Bruno, D., Catalfamo, C., Capitelli, M., Colonna, G., De Pascale, O., Diomede, P., Gorse, C., Laricchiuta, A., Longo, S., Giordano, D., Pirani, F.: Phys. Plasmas 17, 112315 (2010)

    Google Scholar 

  14. Albertí, M., Huarte-Larrañaga, F., Aguilar, A., Lucas, J.M., Pirani, F.: Phys. Chem. Chem. Phys. 13, 8251 (2011)

    Google Scholar 

  15. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: Simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Manuali, C., Rampino, S., Laganà, A.: Comp. Phys. Comm. 181, 1179 (2010); Manuali, C., Laganà, A.: Future Gen. Comp. Syst. 27, 315 (2011)

    Google Scholar 

  17. Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006), http://www.compchem.unipg.it

    Chapter  Google Scholar 

  18. Elango, M., Maciel, G.S., Lombardi, A., Cavalli, S., Aquilanti, V.: Int. J. Quantum Chem. 111, 1784–1791 (2011)

    Google Scholar 

  19. Elango, M., Maciel, G.S., Palazzetti, F., Lombardi, A., Aquilanti, V.: J. Phys. Chem. A. 114, 9864–9874 (2010)

    Google Scholar 

  20. Lombardi, A., Palazzetti, F., Maciel, G.S., Aquilanti, V., Sevryuk, M.B.: Int. J. Quantum Chem. 111, 1651 (2011)

    Google Scholar 

  21. Lombardi, A., Maciel, G.S., Palazzetti, F., Grossi, G., Aquilanti, V.: J. Vacuum Soc. Japan 53, 645 (2010)

    Google Scholar 

  22. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Phys. Scripta 78, 058119 (2008)

    Google Scholar 

  23. Barreto, P.R.P., Albernaz, A.F., Caspobianco, A., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Comput. Theor. Chem. 990, 56–61 (2012)

    Google Scholar 

  24. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Phys. Scripta 84, 028111 (2011)

    Google Scholar 

  25. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Rendiconti Lincei 22, 125 (2011)

    Google Scholar 

  26. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Int. J. Quantum Chem. 118, 318–332 (2011)

    Google Scholar 

  27. Barreto, P.R.P., Palazzetti, F., Grossi, G., Lombardi, A., Maciel, G.S., Vilela, A.F.A.: Int. J. Quantum Chem. 110, 777 (2010)

    Google Scholar 

  28. Aquilanti, V., Lombardi, A., Yurtsever, E.: Phys. Chem. Chem. Phys., 4, 5040–5051 (2002)

    Google Scholar 

  29. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Phys. Rev. A, 72, 033201 (2005)

    Google Scholar 

  30. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: J. Phys. Chem. A, 111, 12754 (2007)

    Google Scholar 

  31. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: J. Chem. Phys. 121, 5579–5589 (2004)

    Google Scholar 

  32. Calvo, F., Gadéa, X., Lombardi, A., Aquilanti, V.: J. Chem. Phys. 125, 114307 (2006)

    Google Scholar 

  33. Pirani, F., Cappelletti, D., Liuti, G.: Chem. Phys. Lett. 350, 286 (2001)

    Google Scholar 

  34. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Chem. Phys. Lett. 37, 394 (2004)

    Google Scholar 

  35. Pirani, F., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Google Scholar 

  36. Lombardi, A., Palazzetti, F.: Journal of Molecular Structure: THEOCHEM 852, 22 (2008)

    Google Scholar 

  37. Faginas Lago, N., Huarte-Larrañaga, F., Albertí, M.: Eur. Phys. J. D 55, 75 (2009)

    Google Scholar 

  38. Albertí, M., Faginas Lago, N., Pirani, F.: Chem. Phys. 399, 232 (2012)

    Google Scholar 

  39. Albertí, M., Faginas Lago, N.: J. Phys. Chem. A 116, 3094 (2012)

    Google Scholar 

  40. Albertí, M., Aguilar, A., Lucas, J.M., Pirani, F., Coletti, C., Re, N.: J. Phys. Chem. A 113, 14606 (2009)

    Google Scholar 

  41. Albertí, M., Faginas Lago, N.: European Phys. Journal D 67, 73 (2013)

    Google Scholar 

  42. Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: J. Chem. Phys. 129, 164302 (2008)

    Google Scholar 

  43. Ragni, M., Lombardi, A., Pereira Barreto, P.R., Peixoto Bitencourt, A.C.: J. Phys. Chem. A 113, 15355 (2009)

    Google Scholar 

  44. Pack, R.T.: Chem. Phys. Lett. 55, 197 (1978)

    Google Scholar 

  45. Candori, R., Pirani, F., Vecchiocattivi, F.: Chem. Phys. Lett. 102, 412 (1983)

    Google Scholar 

  46. Beneventi, L., Casavecchia, P., Volpi, G.G.: J. Chem. Phys. 85, 7011 (1986)

    Google Scholar 

  47. Beneventi, L., Casavecchia, P., Pirani, F., Vecchiocattivi, F., Volpi, G.G., Brocks, G., van der Avoird, A., Heijmen, B., Reuss, J.: J. Chem. Phys. 95, 195 (1991)

    Google Scholar 

  48. Gomez, L., Bussery-Honvault, B., Cauchy, T., Bartolomei, M., Cappelletti, D., Pirani, F.: Chem. Phys. Lett. 445, 99 (2007)

    Google Scholar 

  49. Oakley, M.T., Wheatley, R.J.: J. Chem. Phys. 130, 034110 (2009)

    Google Scholar 

  50. Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, S.A., Williams, H.L., Rice, B.M.: J. Chem. Phys. 110, 3785 (1999)

    Google Scholar 

  51. Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.-H., Peslherbe, G.H., Swamy, K.N., Vande Linde, S.R., Zhu, L., Varandas, A., Wang, H., Wolf, R.J.: J. Quantum Chemistry Program Exchange Bulletin 16, 671 (1996)

    Google Scholar 

  52. Carter, S., Murrell, J.N.: Croat. Chem. Acta 57, 355 (1984)

    Google Scholar 

  53. Faginas Lago, N., Albertí, M., Laganà, A., Lombardi, A.: Water (H2O) m or Benzene (C6H6) n Aggregates to Solvate the K + ? In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Quang, N.H., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013)

    Google Scholar 

  54. Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Bartocci, A., Lombardi, A., Faginas Lago, N., Pirani, F.: Modeling the Intermolecular Interactionsand Characterization of the Dynamics of Collisional Autoionization Processes. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Quang, N.H., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F. (2013). Carbon Oxides in Gas Flows and Earth and Planetary Atmospheres: State-to-State Simulations of Energy Transfer and Dissociation Reactions. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics