Skip to main content

GPU Integral Computations in Stochastic Geometry

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7972))

Included in the following conference series:

Abstract

Stochastic geometry has applications in areas such as robotics, tomographic reconstruction with uncertainties, spatial Poisson-Vonoroi tessellations, and imaging from medical data using tetrahedral meshes. We examine numerical approaches for the computation of multivariate integrals for a family of problems where uniformly distributed points are picked as polyhedron vertices for tessellations, for example, tetrahedron vertices in a cube, tetrahedron or on a spherical surface. The classical cube tetrahedron picking problem yields the expected volume of a random tetrahedron in a cube, and helps furthermore assessing unsolved extremal problems (cf., A. Zinani, 2003). We demonstrate feasible numerical approaches including adaptive integration through region partitioning, quasi-Monte Carlo (based on a randomized Korobov lattice), and Monte Carlo techniques, which are the basic methods of our parallel integration package ParInt. We then describe our implementation of the Monte Carlo approach on GPUs (Graphics Processing Units) in CUDA C, and demonstrate its parallel performance for various stochastic geometry integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zinani, A.: The expected volume of a tetrahedron whose vertices are chosen at random in the interior of a cube. Monatsh. Math. 139, 341–348 (2003), doi:10.1007/s00605-002-0531-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Philip, J.: The expected volume of a random tetrahedron in a cube (2007), http://www.math.kth.se/~johanph/ETC.pdf

  3. Heinrich, L., Körner, Mehlhorn, N., Muche, L.: Numerical and analytical computation of some second-order characteristics of spacial poisson-vonoroi tesselations. Statistics 31, 235–259 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pach, J., Sharir, M.: Combinatorial Geometry and Its Algorithmic Applications: The Alcala Lectures. Amer. Mathematical Society (2009) ISBN-10: 0821846914, ISBN-13: 978-0821846919

    Google Scholar 

  5. Dardenne, J., Siauve, N., Valette, S., Prost, R., Burais, N.: Impact of tetrahedral mesh quality for electromagnetic and thermal simulations. In: compumag, Florianopolis, Brazil, pp. 1044–1045 (2009)

    Google Scholar 

  6. Sitek, A., Huesman, R.H., Gullberg, G.T.: Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud. IEEE Transactions on Medical Imaging 25(9), 1172–1179 (2006)

    Article  Google Scholar 

  7. Fedorov, A., Chrisochoides, N.: Tetrahedral mesh generation for non-rigid registration of brain mri: Analysis of the requirements and evaluation of solutions. In: Garimella, R.V. (ed.) Proceedings of the 17th International Meshing Roundtable. Springer, Heidelberg (2008), doi:10.1007/978-3-540-87921-3

    Google Scholar 

  8. Zhang, Y., Wang, W., Liang, X., Bazilevs, Y., Hsu, M.C., Kvamsdal, T., Brekken, R., Isaksen, J.: High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Computer Modeling in Engineering & Sciences (CMES) (2), 131–148 (2009)

    Google Scholar 

  9. Efron, B.: The convex hull of a random set of points. Biometrica 52, 331–343 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Buchta, C., Müller, J.: Random polytopes in a ball. J. Appl. Prob. 21, 753–762 (1984)

    Article  MATH  Google Scholar 

  11. Affentranger, F.: The expected volume of a random polytope in a ball. J. Microscopy 151, 277–287 (1988)

    Article  Google Scholar 

  12. Miles, R.E.: Isotropic random simplices. Adv. Appl. Probability 3, 353–382 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buchta, C., Reitzneri, M.: The convex hull of random points in a tetrahedron: Solution of Blaschke’s problem and more general results. J. Reine Angew. Math. 536, 1–29 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Philip, J.: The average volume of a random tetrahedron in a tetrahedron. TRITA MAT 06 MA 02 (2006), http://www.math.kth.se/~johanph/ev.pdf

  15. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved problems in geometry, pp. 54–57. Springer, New York (1991), B5. Random Polygons and Polyhedra

    Google Scholar 

  16. Weisstein, E.W.: Sphere tetrahedron picking. In: MathWorld – A Wolfram Web Resource (March 2013), http://mathworld.wolfram.com/topics/RandomPointPicking.html

  17. Buchta, C.: Distribution-independent properties of the convex hull of random points. J. Theor. Prob. 3, 387–393 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berntsen, J., Espelid, T.O., Genz, A.: An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Softw. 17, 437–451 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Genz, A.: MVNDST (1998), http://www.math.wsu.edu/faculty/genz/software/fort77/mvndstpack.f

  20. de Doncker, E., Kaugars, K., Cucos, L., Zanny, R.: Current status of the ParInt package for parallel multivariate integration. In: Proc. of Computational Particle Physics Symposium (CPP 2001), pp. 110–119 (2001)

    Google Scholar 

  21. Li, S., Kaugars, K., de Doncker, E.: Distributed adaptive multivariate function visualization. International Journal of Computational Intelligence and Applications (IJCIA) 6(2), 273–288 (2006)

    Article  Google Scholar 

  22. Genz, A.: MVNPACK (2010), http://www.math.wsu.edu/faculty/genz/software/fort77/mvnpack.f

  23. L’Equyer, P.: Combined multiple recursive random number generators. Operations Research 44, 816–822 (1996)

    Article  Google Scholar 

  24. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. OpenMP website, http://www.openmp.org

  26. CUDA NVIDIA Developer Zone, https://developer.nvidia.com/category/zone/cuda-zone

  27. OpenACC website, http://www.openacc-standard.org

  28. Open MPI website, http://www.open-mpi.org

  29. MPI website, http://www-unix.mcs.anl.gov/mpi/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Doncker, E., Assaf, R. (2013). GPU Integral Computations in Stochastic Geometry. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics