Skip to main content

A Computational Study on Different Penalty Functions with DIRECT Algorithm

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7971))

Included in the following conference series:

Abstract

The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into an unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of penalty functions, within the DIRECT algorithm. In order to assess the applicability and performance of the proposed approaches, some benchmark problems from engineering design optimization are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive penalty method for genetic algorithms in constrained optimization problems. In: Iba, H. (ed.) Frontiers in Evolutionary Robotics, pp. 9–34. I-Tech Education Publ., Austria (2008)

    Google Scholar 

  2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982)

    Google Scholar 

  3. Carroll, C.W.: The created response surface technique for optimizing nonlinear restrained systems. Operations research 184, 9–169 (1961)

    Google Scholar 

  4. Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optimization and Engineering 2, 139–157 (2002)

    Article  MathSciNet  Google Scholar 

  5. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costa, M.F.P., Fernandes, E.M.G.P.: Efficient solving of engineering design problems by an interior point 3-D filter line search method. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1048, pp. 197–200 (2008)

    Google Scholar 

  7. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiacco, A.V., McCormick, G.P.: Extensions of SUMT for nonlinear programming: equality constraints and extrapolation. Management Science 12(11), 816–828 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  9. Finkel, D.E.: Global optimization with the DIRECT algorithm. PhD thesis, North Carolina state University (2005)

    Google Scholar 

  10. Finkel, D.E., Kelley, C.T.: Convergence Analysis of the DIRECT Algorithm. North Carolina State University: Center for Research in Scientific Computation, Raleigh (2004)

    Google Scholar 

  11. Gablonsky, J.M.: Modifications of the DIRECT algorithm. PhD Thesis, North Carolina State University, Raleigh, North Carolina (2001)

    Google Scholar 

  12. Henderson, S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, J.D., Barton, R.R.: Extension of the direct optimization algorithm for noisy functions. In: Proceedings of the 2007 Winter Simulation Conference (2007)

    Google Scholar 

  13. Joines, J., Houck, C.: On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Proceedings of the First IEEE Congress on Evolutionary Computation, Orlando, FL, pp. 579–584 (1994)

    Google Scholar 

  14. Jones, D.R.: The DIRECT Global Optimization Algorithm. The Encyclopedia of Optimization. Kluwer Academic (1999)

    Google Scholar 

  15. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  16. Lewis, R., Torczon, V.: A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on Optimization 4(4), 1075–1089 (2012)

    MathSciNet  Google Scholar 

  17. Liu, J.-L., Lin, J.-H.: Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization. Engineering Optimization 39, 287–305 (2007)

    Article  MathSciNet  Google Scholar 

  18. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research (1999)

    Google Scholar 

  19. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. Journal of Optimization Theory and Application 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetic particle swarm optimization. Annals of Operations Research 156, 99–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization. Engineering Optimization 34(2), 141–153 (2002)

    Article  Google Scholar 

  22. Rocha, A.M.A.C., Fernandes, E.M.G.P.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. International Journal of Computer Mathematics 86, 1932–1946 (2009)

    Article  MATH  Google Scholar 

  23. Tessema, B., Yen, G.G.: A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization. In: IEEE Congress on Evolutionary Computation, pp. 246–253 (2006)

    Google Scholar 

  24. Vilaça, R., Rocha, A.M.A.C.: An Adaptive Penalty Method for DIRECT Algorithm in Engineering Optimization. In: Simos, T.E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) AIP Conference Proceedings, vol. 1479, pp. 826–829 (2012)

    Google Scholar 

  25. Vilaça, R.: Sofia Pinto: Extending the DIRECT algorithm to solve constrained nonlinear optimization problems: a case study. MSc Thesis, University of Minho (2012)

    Google Scholar 

  26. Xavier, A.E.: Hyperbolic penalty: a new method for nonlinear programming with inequalities. International Transactions in Operational Research 8, 659–671 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, A.M.A.C., Vilaça, R. (2013). A Computational Study on Different Penalty Functions with DIRECT Algorithm. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39637-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39637-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39636-6

  • Online ISBN: 978-3-642-39637-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics