Skip to main content

Photodynamic Diagnosis and Therapy for Brain Malignancies from the Bench to Clinical Application

  • Chapter
  • First Online:
  • 2211 Accesses

Abstract

Glioblastomas are the third most common cause of cancer death in patients between 15 and 35 years. Photodynamic diagnosis (PDD), fluorescence guided tumour resection (FGR) and photodynamic therapy (PDT) is undergoing intensive clinical investigations as adjuvant treatment for malignant brain tumours. Besides many reports on clinical phase I/II trials for PDT for malignant brain tumours, there are only few controlled clinical trials. Variations in treatment protocols make the evaluation scientifically difficult; however, there is a clear trend towards prolonging median survival after one single photo dynamic treatment as compared to standard therapeutic regiments. According to a met-analysis the median survival for primary glioblastoma multi-forme WHO IV after PDT was 22 months and for recurrent GBM 9 months as compared to standard conventional treatment which is 15 and 3 months, respectively. Fluorescence-guided resection of the tumour demonstrated significant greater reduction of tumour burden. The combination of PDD/FGR and intra operative PDT (“to see and to treat”) offers an exciting approach to the treatment of malignant brain tumours. Photodynamic treatment supported by observational studies with combined total of > 1,000 patients and 3 controlled trials in GBMs. PDT was highly selective, safe, significantly improved good quality survival and delayed tumour relapse (p < 0.001). The following chapter provides an overview on the current clinical data of PDT as well as photosensitisers, technical developments and indications for photodynamic application in neurosurgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  Google Scholar 

  2. Kostron H (2010) Photodynamic diagnosis and therapy and the brain. Methods Mol Biol 635:261–280

    Article  CAS  Google Scholar 

  3. Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagn Photodyn Ther 7(2):76–85

    Article  CAS  Google Scholar 

  4. Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA (2012) Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev. doi:10.1016/j.ctrv.2012.07.004

  5. Eljamel SM (2008) Brain photodiagnosis (PD), fluorescence guided resection (FGR) and photodynamic therapy (PDT): past, present and future. Photodiagn Photodyn Ther 5:29–35

    Article  Google Scholar 

  6. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  7. Kostron H, Obwegeser A, Seiwald M (1996) PDT in neurosurgery; a review. J Photochem Photobiol, B 36:157–168

    Article  CAS  Google Scholar 

  8. Fayter D, Corbett M, Heirs M, Fox D, Eastwood A (2010) A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, Barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol Assess 14(37):1–288

    CAS  Google Scholar 

  9. Patrice T, Olivier D, Bourre L (2006) PDT in clinics: indications, results, and markets. J Environ Pathol Toxicol Oncol 25(1–2):467–485

    Article  Google Scholar 

  10. Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma—A review, Part I—A biological basis. J Clin Neurosci 13:615–625

    Article  CAS  Google Scholar 

  11. Kostron H, Zimmermann A, Obwegeser A (1998) MTHPC-mediated photodynamic detection for fluorescence guided resection of brain tumors. Surgical-assist systems. In: Bogner SM, Charles ST, Grundfest WS, Harrington JA, Katzir A, Lome LS, Vannier MW, von-Hanwehr R (eds) SPIE proceedings-series. International-biomedical-optics-society, SPIE vol 3262. pp 259–264

    Google Scholar 

  12. Bogaards A, Varma A, Zhang K, Zach D, Bisland SK, Moriyama EH, Lilge L, Muller PJ, Wilson BC (2005) Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: pre-clinical model and technology development. Photochem Photobiol Sci 4:438–442

    Article  CAS  Google Scholar 

  13. Kennedy JC, Marcus SL, Potier RH (1996) Photodynamic therapy and photodiagnosis using endogenous photosensitisation induced by 5-aminolevulinic acid (ALA): mechanism and clinical results. J Clin Laser Med Surg 15:289–304

    Google Scholar 

  14. Pichlmeier U, Bink A, Schackert G, Stummer W (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10:1025–1034

    Article  Google Scholar 

  15. Kostron H, Fiegele Th, Akatuna E (2006) Combination of FOSCAN® mediated Fluorescence Guided Resection and Photodynamic Treatment as new therapeutic concept for Malignant Brain Tumors. Laser Med 24:285–290

    Article  Google Scholar 

  16. Zimmermann A, Ritsch-Marte M, Kostron H (2001) mTHPC-mediated photodynamic diagnosis of malignant brain tumors. Photochem Photobiol 74:611–616

    Article  CAS  Google Scholar 

  17. Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23:361–367

    Article  Google Scholar 

  18. Kaneko S, ShírasakaT, Yoshimuzi T, Fujimoto S,Yamouchi T,Yoshimoto T, Tokuda K, Kashiwaba T, Kohama Y (2002) Fluorescence diagnosis and PDT using two types of photosensizer. In: Recent progress on clinical and basic research of ALA, Proceedings of 2nd international ALA symposium, Fukuoka, pp 17–24

    Google Scholar 

  19. Jori G (1996) Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol, B 36:87–93

    Article  CAS  Google Scholar 

  20. Allison RR, Downie GH, Cuenca R, Hu XH, Carter JH, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–42

    Article  CAS  Google Scholar 

  21. Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagn Photodyn Ther 1:3–7

    Article  CAS  Google Scholar 

  22. Kostron H, Obwegeser A, Jakober R, Zimmermann A, Rueck A (1998) Experimental and clinical results of mTHPC (Foscan®)—mediated photodynamic therapy for malignant brain tumors. Optical methods for tumor treatment and detections: mechanisms and techniques in photodynamics therapy VII. In: Dougherty TJ (ed) International-society-for-optical-engineering, SPIE, vol 3247. Bellingham WA, pp 40–45

    Google Scholar 

  23. Obwegeser A, Jakober R, Kostron H (1998) Uptake and kinetics of C-14 labeled m-THPC and 5-ALA in C-6 rat glioma model. Br J Cancer 78:733–738

    Article  CAS  Google Scholar 

  24. Mannino S, Molinari A, Sabatino G, Ciafrè SA, Colone M, Maira G, Anile C, Arancia G, Mangiola A (2008) Intratumoralvs systemic administration of meta-tetrahydroxyphenylchlorin for photodynamic therapy of malignant gliomas: assessment of uptake and spatial distribution in C6 rat glioma model. Int J Immunopathol Pharmacol 21(1):227–231

    CAS  Google Scholar 

  25. Johansson A, Palte G, Schnell O, Tonn JC, Herms J, Stepp H (2010) 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochem Photobiol 86(6):1373–1378

    Article  CAS  Google Scholar 

  26. Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of non-resectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393

    Article  Google Scholar 

  27. Ritz R, Daniels R, Noell S, Feigl GC, Schmidt V, Bornemann A, Ramina K, Mayer D, Dietz K, Strauss WS, Tatagiba M (2012) Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol 38(4):352–360

    Article  CAS  Google Scholar 

  28. Rovers JP, Schuitmaker JJ, Vahrmeijer AL, Van-Dierendonck JH, Terpstra OT (1998) Interstitial photodynamic therapy with the second-generation photosensitiser bacteriochlorin in a rat model for liver metastases. Br J Cancer 77:2098–2103

    Article  CAS  Google Scholar 

  29. Cole CD, Liu JK, Sheng X, Chin SS, Schmidt MH, Weiss MH, Couldwell WT (2008) Hypericin-mediated photodynamic therapy of pituitary tumors: preclinical study in a GH4C1 rat tumor model. J Neurooncol 87(3):255–261

    Article  CAS  Google Scholar 

  30. El-Zaria ME, Ban HS, Nakamura H (2010) Boron-containing protoporphyrin IX derivatives and their modification for boron neutron capture therapy: synthesis, characterization, and comparative in vitro toxicity evaluation. Chemistry 16(5):1543–1552

    Article  CAS  Google Scholar 

  31. Shliakhtsin SV, Trukhachova TV, Isakau HA, Istomin YP (2009) Pharmacokinetics and biodistribution of Photolon (Fotolon) in intact and tumor-bearing rats. Photodiagn Photodyn Ther 6(2):97–104

    Article  CAS  Google Scholar 

  32. Kessel D, Oleinick NL (2009) Chapter 1 initiation of autophagy by photodynamic therapy. Methods Enzymol 453:1–16

    CAS  Google Scholar 

  33. Kamoshima Y, Terasaka S, Kuroda S, Iwasaki Y (2011) Morphological and histological changes of glioma cells immediately after 5-aminolevulinic acid mediated photodynamic therapy. Neurol Res 33(7):739–746

    Article  CAS  Google Scholar 

  34. Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J (2011) 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10(12):1868–1878

    Article  CAS  Google Scholar 

  35. Kammerer R, Buchner A, Palluch P, Pongratz T, Oboukhovskij K, Beyer W, Johansson A, Stepp H, Baumgartner R, Zimmermann W (2011) Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS ONE 6(6):e21834

    Article  CAS  Google Scholar 

  36. Zhan Q, Yue W, Hu S (2011) Effect of photodynamic therapy and endostatin on human glioma xenografts in nude mice. Photodiagn Photodyn Ther 8(4):314–320

    Article  CAS  Google Scholar 

  37. Inoue H, Kajimoto Y, Shibata MA, Miyoshi N, Ogawa N, Miyatake S, Otsuki Y, Kuroiwa T (2007) Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy. J Neurooncol 83(3):223–231

    Article  CAS  Google Scholar 

  38. Etminan N, Peters C, Ficnar J, Anlasik S, Bünemann E, Slotty PJ, Hänggi D, Steiger HJ, Sorg RV, Stummer W (2011) Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid-based photodynamic treatment. Laboratory investigation. J Neurosurg 115(2):281–288

    Article  CAS  Google Scholar 

  39. Muller PJ, Wilson BC (2006) Photodynamic therapy of brain tumors—A work in progress. Lasers Surg Med 38:384–389

    Article  Google Scholar 

  40. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127

    Article  CAS  Google Scholar 

  41. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, M.Sc Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) European organisation for research and treatment of cancer brain tumor and radiotherapy groups and the national cancer institute of Canada clinical trials group. Radiotherapy plus concomitant and adjuvant. Temozolomide for glioblastoma. N Engl J Med 10:987–996

    Article  Google Scholar 

  42. Kirveliene V, Grazeliene G, Dabkeviciene D, Micke I, Kirvelis D, Juodka B, Didziapetriene J (2006) Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo. Cancer Chemother Pharmacol 57:65–72

    Article  CAS  Google Scholar 

  43. Hornung R, Walt H, Crompton NE, Keefe KA, Jentsch B, Perewusnyk G, Haller U, Köchli OR (1998) m-THPC-mediated photodynamic therapy (PDT) does not induce resistance to chemotherapy, radiotherapy or PDT on human breast cancer cells in vitro. Photochem Photobiol 68:569–574

    Article  CAS  Google Scholar 

  44. Chen Bin, Pogue BW, Hoopes PJ, Hasan T (2005) Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys 61:1216–1226

    Article  CAS  Google Scholar 

  45. Ferrario A, Rucker N, Wong S, Luna M, Gomer ChJ (2007) Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res 67:4989–4995

    Article  CAS  Google Scholar 

  46. Fanuel-Barret D, Patrice T, Foultier MT, Vonarx-Coinsmann V, Robillard N, Lajat Y (1997) Influence of epidermal growth factor on photodynamic therapy of glioblastoma cells in vitro. Res Exp Med 197:219–233

    Article  CAS  Google Scholar 

  47. Norum OJ, Selbo PK, Weyergang A, Giercksky KE, Berg K (2009) Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. J Photochem Photobiol, B 96(2):83–92

    Article  CAS  Google Scholar 

  48. Hirschberg H, Zhang MJ, Gach HM, Uzal FA, Peng Q, Sun CH, Chighvinadze D, Madsen SJ (2009) Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J Neurooncol 95(3):317–329

    Article  CAS  Google Scholar 

  49. Mathews MS, Blickenstaff JW, Shih EC, Zamora G, Vo V, Sun CH, Hirschberg H, Madsen SJ (2012) Photochemical internalization of bleomycin for glioma treatment. J Biomed Opt 17(5):058001

    Article  Google Scholar 

  50. Kostron H, Swartz MR, Miller DC, Martuza RL (1986) The interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model. Cancer 57(5):964–970

    Article  CAS  Google Scholar 

  51. Madsen SJ, Sun CH, Tromberg BJ, Yeh AT, Sanchez R, Hirschberg H (2002) Effects of combined photodynamic therapy and ionizing radiation on human glioma spheroids. Photochem Photobiol 76:411–416

    Article  CAS  Google Scholar 

  52. Lyons M, Phang I, Eljamel S (2012) The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagn Photodyn Ther 9(1):40–45

    Article  Google Scholar 

  53. Mang TS (2004) Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther 1:43–48

    Article  Google Scholar 

  54. Mang TS (2008) Dosimetric concepts for PDT. Photodiagn Photodyn Ther 5:217–223

    Article  Google Scholar 

  55. Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234

    Article  CAS  Google Scholar 

  56. Kaneko S, Kobayashi H, Kohama Y (1999) Stereotactic intratumoral photodynamic therapy on malignant brain tumors. Abstract, international symposium on photodynamic therapy in clinical practice, Innsbruck

    Google Scholar 

  57. Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC (2004) Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol 80:222–230

    Google Scholar 

  58. Hirschberg H, Sørensen DR, Angell-Petersen E, Peng Q, Tromberg B, Sun CH, Spetalen S, Madsen S (2006) Repetitive photodynamic therapy of malignant brain tumors. J Environ Pathol Toxicol Oncol 25:261–279

    Article  CAS  Google Scholar 

  59. Thompson MS, Johansson A, Johansson T, Andersson-Engels S, Svanberg S, Bendsoe N, Svanberg K (2005) Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurement. Appl Opt 1:4023–4031

    Article  Google Scholar 

  60. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  Google Scholar 

  61. Abbas S, Jerjes W, Upile T, Vaz F, Hopper C (2012) The palliative role of PDT in recurrent advanced nasopharyngeal carcinoma: case series. Photodiagn Photodyn Ther 9(2):142–147

    Article  Google Scholar 

  62. Kaneko S (2008) A current overview: photodynamic diagnosis and phtodynamic therapy using 5-ALA in neurosurgery. JJSLSM 29:135–146

    Article  Google Scholar 

  63. Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma—A review Part II—Clinical studies. J Clin Neurosci 13:709–717

    Article  CAS  Google Scholar 

  64. Marks PV, Belchetz PE, Saxena A, Igbaseimokumo U, Thomson S, Nelson M, Stringer MR, Holroyd JA, Brown SB (2000) Effect of photodynamic therapy on recurrent pituitary adenomas: clinical phase I/II trial–an early report. Br J Neurosurg 14:317–325

    Article  CAS  Google Scholar 

  65. Triesscheijn M, Baas P, Schellens JHM, Stewart FA (2006) Photodynamic therapy in oncology. Oncologist 11:1034–1044

    Article  CAS  Google Scholar 

  66. Sakai M, Fujimoto N, Ishii K, Nakamura H, Kaneda Y, Awazu K (2012) In vitro investigation of efficient photodynamic therapy using a nonviral vector; hemagglutinating virus of Japan envelope. J Biomed Opt 17(7):078002

    Google Scholar 

  67. Park EK, Bae SM, Kwak SY, Lee SJ, Kim YW, Han CH, Cho HJ, Kim KT, Kim YJ, Kim HJ, Ahn WS (2008) Photodynamic therapy with recombinant adenovirus AdmIL-12 enhances anti-tumour therapy efficacy in human papillomavirus 16 (E6/E7) infected tumour model. Immunology 124(4):461–468

    Article  CAS  Google Scholar 

  68. Varma AK, Muller PJ (2008) Cranial neuropathies after intracranial Photofrin-photodynamic therapy for malignant supratentorial gliomas-a report on 3 cases. Surg Neurol 70(2):190–193

    Article  Google Scholar 

  69. de Carvalho AC, Zhang X, Roberts C, Jiang F, Kalkanis SN, Hong X, Lu M, Chopp M (2007) Subclinical photodynamic therapy treatment modifies the brain microenvironment and promotes glioma growth. Glia 55(10):1053–1060

    Article  Google Scholar 

  70. Jerjes W, Upile T, Betz CS, El Maaytah M, Abbas S, Wright A, Hopper C (2007) The application of photodynamic therapy in the head and neck. Dent Update 34:478–486

    Google Scholar 

  71. Burch S, London C, Seguin B, Rodriguez C, Wilson BC, Bisland SK (2009) Treatment of canine osseous tumors with photodynamic therapy: a pilot study. Clin Orthop Relat Res 22:44–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwig Kostron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kostron, H. (2014). Photodynamic Diagnosis and Therapy for Brain Malignancies from the Bench to Clinical Application. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_8

Download citation

Publish with us

Policies and ethics