Skip to main content

PDT in Dermatology

  • Chapter
  • First Online:
Photodynamic Therapy
  • 2239 Accesses

Abstract

Skin is the largest organ of the human body. Usually, it is easy accessible for topical application of drugs and light dosimetry is easy due to the rather flat appearance in a first approximation. On the other hand a larger number of skin diseases cover a larger area or show multifocal appearance, which favors regional or large field therapies and impedes surgical interventions. As scar formation is another and today highly unwanted result of surgery, the widespread use of PDT in dermatology is a necessary consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.who.int/uv/health/uv_health2/en/index1.html

  2. http://www.krebsgesellschaft.de/pat_ka_hautkrebs_definition,107793.html

  3. von Tappeiner H (1900) Ueber die Wirkung fluorescierende Stoffe auf Infusiorien nach Versuchen von O Raab. Munch Med Wochenschr 47:5

    Google Scholar 

  4. Raab O (1900) Ueber die Wirkung Fluorescierender Stoffe auf Infusorien. Z Biol 39:524–546

    CAS  Google Scholar 

  5. Tappeiner H von, Jodlbauer A (1907) Die Sensibilisierende Wirkung Fluorescierender Substanzen. Untersuchungen über die Photodynamische Erscheinung FCW, Vogel Leipzig

    Google Scholar 

  6. Hausmann W (1911) Die sensibilisierende Wirkung des Hamatoporphyrins. Biochem Z 30:276–316

    CAS  Google Scholar 

  7. Meyer-Betz F (1913) Untersuchungen über die Biologische (photodynamische) Wirkung des Hamatoporphyrins und anderer Derivative des Blut- und Gallenfarbstoffs. Dtsch Arch Klein Med 112:476–503

    Google Scholar 

  8. von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluorescierenden Stoffen. Munch Med Wochenschr 47:2042–2044

    Google Scholar 

  9. Jesionek A, von Tappeiner H (1905) Zur Behandlung der Hautcarcinome mit fluorescierenden Stoffen. Arch Klin Med 82:223

    Google Scholar 

  10. Divaris DX, Kennedy JC, Pottier RH (1990) Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 4-aminoevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol 136:891–897

    CAS  Google Scholar 

  11. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol, B 6:143–148

    Article  CAS  Google Scholar 

  12. Collaud S, Juzenziene A, Lange N (2004) On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 4:301–316

    Article  CAS  Google Scholar 

  13. Hinnen P, de Rooij FW, van Velthuysen ML, Edixhoven A, van Hillegersberg R, Tilanus HW, Wilson JH, Siersema PD (1998) Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus. Br J Cancer 78:679–682

    Google Scholar 

  14. Krieg RC, Fickweiler S, Wolfbeis OS, Knuechel R (2000) Cell-type specific protoporphyrin IX metabolism in human bladder cancer in vitro. Photochem Photobiol 72:226–233

    Google Scholar 

  15. Hefti M, Holenstein F, Albert I, Looser H, Luginbuehl V (2011) Sesceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO I meningioma cells corresponds to ferrochelatase activity. Photochem Photobiol 87:235–241

    Article  CAS  Google Scholar 

  16. Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, Matsui H, Taketani S (2005) Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol 71:42–49

    Article  CAS  Google Scholar 

  17. Stout DL, Becker FF (1990) Heme synthesis in normal mouse liver and mouse liver tumors. Cancer Res 50:2337–2340

    CAS  Google Scholar 

  18. Navone NM, Polo CF, Frisardi AL, Andrade NE, Battle AM (1990) Heme biosynthesis in human breast cancer-mimetic “in vitro” studies and some heme enzymic activity levels. Int J Biochem 22:1407–1411

    Article  CAS  Google Scholar 

  19. Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J (2011) Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16:4140–4164

    Article  CAS  Google Scholar 

  20. Collaud S, Juzenziene A, Lange N (2004) On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 4:301–316

    Article  CAS  Google Scholar 

  21. http://www.dermotopics.de/german/ausgabe1_09_d/DIP1_09_d.htm

  22. Grüning N, Müller-Goymann CC (2008) Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid. J Pharm Sci 97:2311–2323

    Article  Google Scholar 

  23. Forster B, Klein A, Szeimies RM, Maisch T (2010) Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium: YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol 19:806–812

    Article  CAS  Google Scholar 

  24. Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TR, Iani V, Moan J, Juzeniene A (2010) Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 27:2213–2220

    Google Scholar 

  25. Lopez RF, Bentley MV, Delgado-Charro MB, Salomon D, van den Bergh H, Lange N, Guy RH (2003) Enhanced delivery of 5-aminolevulinic acid esters by iontophoresis in vitro. Photochem Photobiol 77:304–308

    Article  CAS  Google Scholar 

  26. Johansson A, Svensson J, Bendsoe N, Svanberg K, Alexandratou E, Kyriazi M, Yova D, Gräfe S, Trebst T, Andersson-Engels S (2007) Fluorescence and absorption assessment of a lipid mTHPC formulation following topical application in a non-melanotic skin tumor model. J Biomed Opt 12:034026

    Google Scholar 

  27. Alexandratou E., Kyriazi M, Trebst T, Gräfe S, Yova D (2007) Photodynamic therapy of non melanoma skin cancer murine model by topical application of a novel mTHPC liposomal formulation. In: Proceedings SPIE 6632, Therapeutic Laser Applications and Laser-Tissue Interactions III, 66320 V, 03 July 2007

    Google Scholar 

  28. Scheglmann D, Fahr A, Gräfe S, Neuberger W, Albrecht V (2011) Temoporfin and its liposomal formulations Foslip and Fospeg—Properties and behavior. Photodiagnosis and Photodynamic Therapy 8(2):195

    Google Scholar 

  29. Boehm TK, Ciancio SG (2011) Diode laser activated indocyanine green selectively kills bacteria. J Int Acad Periodontol 3(2):58–63

    Google Scholar 

  30. Tuchin VV, Genina EA, Bashkatov AN, Simonenko GV, Odoevskaya OD, Altshuler GB (2003) A pilot study of ICG laser therapy of acne vulgaris: photodynamic and photothermolysis treatment. Lasers Surg Med 33(5):296–310

    Article  Google Scholar 

  31. König K, Schneckenburger H, Rück A, Steiner R (1993) In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins. J Photochem Photobiol, B 18(2–3):287–290

    Article  Google Scholar 

  32. Dysart JS, Patterson MS (2006) Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions. Photochem Photobiol Sci 5(1):73–81

    Article  CAS  Google Scholar 

  33. König K, Wyss-Desserich MT, Tadir Y, Haller U, Tromberg B, Berns MW, Wyss P (2006) Modifications of protoporphyrin IX fluorescence during ALA-based photodynamic therapy of endometriosis. Med Laser Appl 21(4):291–297

    Article  Google Scholar 

  34. Theodossiou T, MacRobert AJ (2002) Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratinocytes. Photochem Photobiol 76(5):530–537

    Article  CAS  Google Scholar 

  35. Department of Biology, Davidson College, Davidson, NC 28035. Fluorescence recovery after photobleaching (FRAP). <http://www.bio.davidson.edu/Courses/Molbio/FRAPx/FRAP.html>

  36. Moan J, Ma L, Iani V, Juzeniene A (2005) Influence of light exposure on the kinetics of protoporphyrin IX formation in normal skin of hairless mice after application of 5-aminolevulinic acid methyl ester. J Invest Dermatol 125(5):1039–1044

    Article  CAS  Google Scholar 

  37. Orenstein A, Kostenich G, Malik Z (1997) The kinetics of protoporphyrin fluorescence during ALA-PDT in human malignant skin tumors. Cancer Lett 120(2):229–234

    Article  CAS  Google Scholar 

  38. Van der Veen N, De Bruijn HS, Star WM (1997) Photobleaching during and re-appearance after photodynamic therapy of topical ALA-induced fluorescence in UVB-treated mouse skin. Int J Cancer 72(1):110–118

    Article  Google Scholar 

  39. Dietel W, Pottier R, Pfister W, Schleier P, Zinner K (2007) 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: a study of the biosynthesis of porphyrins by bacteria of the human digestive tract. J Photochem Photobiol, B 86(1):77–86

    Article  CAS  Google Scholar 

  40. Attili SK, Lesar A, McNeill A, Camacho-Lopez M, Moseley H, Ibbotson S, Samuel ID, Ferguson J (2009) An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br J Dermatol 161(1):170–173

    Article  CAS  Google Scholar 

  41. Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 17(3):173–186

    Article  CAS  Google Scholar 

  42. Wiegell SR, Haedersdal M, Philipsen PA, Eriksen P, Enk CD, Wulf HC (2008) Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blinded study. Br J Dermatol 158:740–746

    Article  CAS  Google Scholar 

  43. Wiegell SR, Hædersdal M, Eriksen P, Wulf HC (2009) Photodynamic therapy of actinic keratoses with 8% and 16% methyl aminolaevulinate and home-based daylight exposure: a double-blinded randomized clinical trial. Br J Dermatol 160:1308–1314

    Article  CAS  Google Scholar 

  44. http://www.nice.org.uk/guidance/MTG6

  45. Fayter D, Corbett M, Heirs M, Fox D, Eastwood A (2010) A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions. Barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol Assess 14:37

    Google Scholar 

  46. Kaufmann R, Spelman L, Weightman W, Reifenberger J, Szeimies RM, Verhaeghe E et al (2008) Multicentre intraindividual randomized trial of topical methyl aminolaevulinate-photodynamic therapy vs. cryotherapy for multiple actinic keratoses on the extremities. Br J Dermatol 158:994–999

    Article  CAS  Google Scholar 

  47. Szeimies RM, Karrer S, Radakovic-Fijan S, Tanew A, Calzavara-Pinton PG, Zane C et al (2002) Photodynamic therapy using topical methyl 5-aminolevulinate compared with cryotherapy for actinic keratosis: a prospective, randomized study. J Am Acad Dermatol 47:258–262

    Article  CAS  Google Scholar 

  48. Morton C, Campbell S, Gupta G, Keohane S, Lear J, Zaki I et al (2006) Intraindividual, right-left comparison of topical methyl aminolaevulinate-photodynamic therapy and cryotherapy in subjects with actinic keratoses: a multicentre, randomized controlled study. Br J Dermatol 155:1029–1036

    Article  CAS  Google Scholar 

  49. Freeman M, Vinciullo C, Francis D, Spelman L, Nguyen R, Fergin P et al (2003) A comparison of photodynamic therapy using topical methyl aminolevulinate (Metvix) with single cycle cryotherapy in patients with actinic keratosis: a prospective, randomized study. J Dermatol Treat 14:99–106

    Article  CAS  Google Scholar 

  50. Sotiriou E, Apalla Z, Maliamani F, Zaparas N, Panagiotidou D, Ioannides D (2009) Intraindividual, rightleft comparison of topical 5-aminolevulinic acidphotodynamic therapy vs. 5% imiquimod creamfor actinic keratoses on the upper extremities. J EurAcad Dermatol Venereol 23:1061–1065

    Google Scholar 

  51. Dragieva G, Prinz BM, Hafner J, Dummer R, Burg G, Binswanger U et al (2004) A randomized controlled clinical trial of topical photodynamic therapy with methyl aminolaevulinate in the treatment of actinic keratoses in transplant recipients. Br J Dermatol 151:196–200

    Article  CAS  Google Scholar 

  52. Cox NH, Eedy DJ, Morton CA (1999) Guidelines for management of Bowen’s disease. British association of dermatologists. Br J Dermatol 141:633–641

    Article  CAS  Google Scholar 

  53. Morton C, Horn M, Leman J, Tack B, Bedane C, Tjioe M et al (2006) Comparison of topical methyl aminolevulinate photodynamic therapy with cryotherapy or Fluorouracil for treatment of squamous cell carcinoma in situ: results of a multicenter randomized trial. Arch Dermatol 142:729–735

    Article  CAS  Google Scholar 

  54. van der Snoek EM, den Hollander JC, Aans JB, Sterenborg HJ, van der Ende ME, Robinson DJ (2012) Photodynamic therapy with systemic meta-tetrahydroxyphenylchlorin in the treatment of anal intraepithelial neoplasia, grade 3. Lasers Surg Med 44(8):637–44

    Google Scholar 

  55. Szeimies RM, Ibbotson S, Murrell DF, Rubel D, Frambach Y, de Berker D et al (2008) A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 22:1302–1311

    Article  CAS  Google Scholar 

  56. Rhodes LE, de Rie MA, Leifsdottir R, Yu RC, Bachmann I, Goulden V et al (2007) Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch Dermatol 143:1131–1136

    Article  CAS  Google Scholar 

  57. Berroeta L, Clark C, Dawe RS, Ibbotson SH, Fleming CJ (2007) A randomized study of minimal curettage followed by topical photodynamic therapy compared with surgical excision for low-risk nodular basal cell carcinoma. Br J Dermatol 157:401–403

    Article  CAS  Google Scholar 

  58. Betz CS, Rauschning W, Stranadko EP, Riabov MV, Volgin VN, Albrecht V, Nifantiev NE, Hopper C (2012) Long-term outcomes following Foscan®-PDT of basal cell carcinomas. Lasers Surg Med 44(7):533–540

    Article  Google Scholar 

  59. Edstrom DW, Hedblad MA (2008) Long-term follow-up of photodynamic therapy for mycosis fungoides. Acta Derm Venereol 88(3):288–290

    Google Scholar 

  60. Debu A, Bessis D, Girard C, Du Thanh A, Guillot B, Dereur O (2013) Photodynamic therapy with methyl aminolaevulinate for cervical and/or facial lesions of folliculotropic mycosis fungoides: interest and limits. Br J Dermatol 168(4):896–898

    Article  CAS  Google Scholar 

  61. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol, B 6:143–148

    Article  CAS  Google Scholar 

  62. Fabbrocini G, De Vita V, Monfrecola A (2010) Photodynamic therapy with 20% topical 5-Aminolaevulinic Acid or Placebo for the treatment of common therapies-resistant plantar warts: a randomised double-blind trial. J Egypt Women Dermatol Soc 7(2):81–86

    Google Scholar 

  63. Szeimies RM, Schleyer V, Moll I, Stocker M, Landthaler M, Karrer S (2009) Adjuvant photodynamic therapy does not prevent recurrence of condylomata acuminata after carbon dioxide laser ablation—A phase III, prospective, randomized, bicentric, double-blind study. Dermatol Surg 35(5):757–764

    Google Scholar 

  64. Itoh Y, Ninomiya Y, Tajima S et al (2001) Photodynamic therapy of acne vulgaris with topical delta-aminolaevulinic acid and incoherent light in Japanese patients. Br J Dermatol 144:575–579

    Article  CAS  Google Scholar 

  65. Kohl EA, Karrer S (2012) Photodynamic skin rejuvenation. Photonics and Lasers in Medicine 1:27–33

    Article  Google Scholar 

  66. Gardlo K, Horska Z, Enk CD, Rauch L, Megahed M, Ruzicka T, Fritsch C (2003) Treatment of cutaneous leishmaniasis by photodynamic therapy. J Am Acad Dermatol 48(6):893–896

    Google Scholar 

  67. Akilov OE, Kosaka S, O’Riordan K, Hasan T (2007) Parasiticidal effect of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol 16(8):651–660

    Google Scholar 

  68. Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963

    Article  CAS  Google Scholar 

  69. Steiner R, Kunzi-Rapp K, Scharffetter-Kochanek K (2003) Optical coherence tomography: clinical applications in dermatology. Med Laser Appl 18(3):249–259

    Article  Google Scholar 

  70. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stücker M, Altmeyer P, Bechara FG (2007) In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci 45(3):167–173

    Article  Google Scholar 

  71. Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217(1):14–20

    Article  Google Scholar 

  72. Mogensen M, Nürnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB (2009) In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol 160(5):1026–1033

    Article  CAS  Google Scholar 

  73. Jenkins FA, White HE (1957) Fundamentals of optics. McGraw-Hill, New York

    Google Scholar 

  74. Ziolkowska M, Philipp CM, Liebscher J, Berlien H-P (2009) OCT of healthy skin, actinic skin and NMSC lesions. Med Laser Appl 24(4):256–264

    Article  Google Scholar 

  75. Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L et al (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35(6):965–972

    Article  CAS  Google Scholar 

  76. Göppner D, Mechow N, Liebscher J, Thiel E, Seewald G, Buchholz A, Gollnick H, Philipp CM, Schönborn K-H (2012) High-resolution two-photon imaging of HE-stained samples in dermatohistopathology—A pilot study on skin tumours. Photonics Lasers Med 1(2):133–140

    Google Scholar 

Download references

Acknowledgments

I would like to thank all my coworkers in clinical and experimental PDT in our clinic and in particular to Maria Ziolkowska, Friederike Hirsch and Max Klomsdorff who prepared the grafics and OCT-images for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten M. Philipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Philipp, C.M. (2014). PDT in Dermatology. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_7

Download citation

Publish with us

Policies and ethics