Skip to main content

Diagnostic and Laser Measurements in PDT

  • Chapter
  • First Online:
Photodynamic Therapy
  • 2235 Accesses

Abstract

The diagnosis of tissue alterations by fluorescence spectroscopy or different modalities of fluorescence imaging is widely used to detect precancerous or cancerous lesions. Demarcation of such lesions supports the efficient treatment either by photodynamic therapy (PDT) or conventional surgical intervention. Autofluorescence of tissue intrinsic chromophores like flavines, Nicotinamide-Adenine-Dinucleotide-Hydrogen (NADH), collagens or porphyrins excited by UV or blue light and change of the concentrations of the fluorescent compounds is an indication of tissue alterations. More specific is the use of fluorescent sensitizers enriched in target cells after local or systemic application. Meanwhile, sensitizers of the third generation are developed or coupled to nanoparticles as carriers. For application of the optimum light dose in PDT, dosimetry measurements must be performed with devices adapted to the geometry of the specific organ to be treated. The use of fluorescent sensitizers as diagnostic and therapeutic agents in dermatology goes back to Hermann von Tappeiner (1847–1927), director of the pharmacological institute at the university in Munich, in the late 19th century [1]. According to the findings of his student Raab (Z Biol 39:524–546, 1900) who discovered a light dependent phototoxicity in his cellular experiments [2], von Tappeiner introduced and published the term “photodynamic” in von Tappeiner and Jodlbauer (Dtsch Arch Klein Med 80:427–487, 1904). Since then, phototherapy continuously developed and Finsen Ackroyd et al. (Photochem Photobiol 74:656–669, 2001) were awarded the Nobel Prize 1903 after he had treated 800 patients suffering from Lupus vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Tappeiner H, Jodlbauer A (1904) Ueber die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Dtsch Arch Klein Med 80:427–487

    Google Scholar 

  2. Raab O (1900) Ueber die Wirkung fluorescierender Stoffe auf Infusorien. Z Biol 39:524–546

    CAS  Google Scholar 

  3. Steiner R (2011) Basic laser physics. In: Raulin C, Karsai S (eds) Laser and IPL technology in dermatology and aesthetic medicine. Springer, Berlin Heidelberg, pp 3–22

    Chapter  Google Scholar 

  4. Wu Y, Xi P, Qu JY, Cheung T-H, Yu M-Y (2004) Depth-resolved fluorescence spectroscopy reveals layered structure of tissue. Opt Express 12(14):3218–3223

    Article  CAS  Google Scholar 

  5. Hirsch FR et al (2001) Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 7:5–22

    CAS  Google Scholar 

  6. Escargel B et al (2009) Early diagnosis of lung cancer: impact of autofluorescence bronchoscopy. Rev Pneumol Clin 65:287–291

    Article  Google Scholar 

  7. Sutedja TG et al (2001) Autofluorescence bronchoscoy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest 120(4):1327–1332

    Article  CAS  Google Scholar 

  8. Loewen G et al (2007) Autofluorescence bronchoscopy for lung cancer surveillance based on risk assessment. Thorax 62:335–340

    Article  Google Scholar 

  9. Divisi D, di Tommaso S, de Vico A, Crisci R (2010) Early diagnosis of lung cancer using a SAFE-3000 autofluorescence bronchoscopy. Interact CardioVasc Thorac Surg 11:740–744. doi:10.1510/icvts.2010.242123

    Article  Google Scholar 

  10. Lam B et al (2006) The clinical value of autofluorescence bronchoscopy for the diagnosis of lung cancer. Eur Respir J 28:915–919

    Article  CAS  Google Scholar 

  11. Xiao YL et al (2010) Comparison of the autofluorescence bronchoscope and the white light bronchoscope in airway examination. Chin J Cancer 29:1018–1022

    Article  Google Scholar 

  12. Thakur A, Gao L, Ren H, Yang T, Chen T, Chen M (2012) Descriptive data on cancerous lung lesions detected by auto-fluorescence bronchoscope: a five-year study. Ann Thorac Med 7(1):21–25

    Article  Google Scholar 

  13. Perry SW, Burke RM, Brown EB (2012) Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 40(2):277–291

    Article  Google Scholar 

  14. Baumgartner R et al (1996) Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol B 36:169–174

    Article  CAS  Google Scholar 

  15. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  Google Scholar 

  16. Vasilchenko SY et al (2010) Application of aluminium phthalocyanine nanoparticles for fluorescent diagnosis in dentistry and skin autotransplantology. J Biophoton 3(5–6):336–346

    Article  CAS  Google Scholar 

  17. Shcherbo D et al (2010) Near-Infrared fluorescent proteins. Nat Methods 7:827–829

    Article  CAS  Google Scholar 

  18. Senge MO (2012) mTHPC—a drug on its way from second to third generation photosensitizer? Photodiagn Photodyn Ther 9:170–179

    Article  CAS  Google Scholar 

  19. Jocham D, Stepp H, Waidelich R (2008) Photodynamic diagnosis in urology: state-of-the-art. Eur Urol 53:1138–1150

    Article  CAS  Google Scholar 

  20. D’Hallewin M-A, Bezdetnaya L, Guillemin F (2002) Fluorescence detection of bladder cancer: a review. Eur Urol 42:417–425

    Article  Google Scholar 

  21. Zaak D, Frimberger D, Stepp H et al (2001) Quantification of 5-aminolevulinic acid induced fluorescence improves the specificity of bladder cancer detection. J Urol 166:1665–1668

    Article  CAS  Google Scholar 

  22. Pottier R, Krammer B, Stepp H, Baumgartner R (eds) (2006) Photodynamic therapy with ALA, a clinical handbook. RSC Publishing, Cambridge UK

    Google Scholar 

  23. Noell S, Mayer D, Strauss WSL, Tatagiba MS, Ritz R (2011) Selective enrichment of hypericin in malignant glioma: pioneering in vivo results. Int J Oncol 38:1343–1348

    CAS  Google Scholar 

  24. Zeisser-Labouèbe M, Delie F, Gurny R, Lange N (2009) Benefits of nanoencapsulation for the hypericin-mediated photodetection of ovarian micrometastases. Eur J Pharm Biopharm 71:207–213

    Article  Google Scholar 

  25. Zang X et al (2012) Fluorescence examination and photodynamic therapy of facial squamous cell carcinoma—a case report. Photodiagn Photodyn Ther 9:87–90

    Article  Google Scholar 

  26. Andersson-Engels S, af Klinteberg C, Svanberg K, Svanberg S (1997) In vivo fluorescence imaging for tissue diagnostics. Phys Med Biol 42:815–824

    Article  CAS  Google Scholar 

  27. Loschenov VB, Konov VI, Prokhorov AM (2000) Photodynamic therapy and fluorescence diagnostics. Laser Phys 10:1188–1207

    Google Scholar 

  28. Sandberg C, Paoli J, Gillstedt M et al (2011) Fluorescence diagnostics of basal cell carcinomas comparing methyl-aminolaevulinate and aminolaevulinic acid and correlation with visual clinical tumour size. Acta Derm Venerol 91:398–403

    Article  CAS  Google Scholar 

  29. Maduray K, Odhav B, Nyokong T (2012) In vitro photodynamic effect of aluminium tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Photodiagn Photodyn Ther 9:32–39

    Article  CAS  Google Scholar 

  30. Pech O, Ell C (2004) Ösophaguskarzinome—Diagnostik und Therapie. Chir Gastroenterol 20:7–12

    Article  Google Scholar 

  31. Sieron-Stoltny K, Kwiatek S, Latos W et al (2012) Autofluorescence endoscopy with “real-time” digital image processing in differential diagnostics of selected benign and malignant lesions in the oesophagus. Photodiagn Photodyn Ther 9:5–10

    Article  Google Scholar 

  32. zaak D, Sroka R, Khoder W et al (2008) Phootdynamic diagnosis of prostate cancer using 5-aminolevulinic acid—first clinical experiences. Urology 72:345–348

    Article  Google Scholar 

  33. Adam C, Salomon G, Walther S et al (2009) Photodynamic diagnosis using 5-aminolevulinic acid for the detection of positive surgical margins during radical prostatectomy in patients with carcinoma of the prostate: a multicentre, prospective, phase 2 trial of a diagnostic procedure. Eur Urol 55:1281–1288

    Article  CAS  Google Scholar 

  34. Jerjes WK, Upile T, Wong BJ et al (2011) The future of medical diagnostics: review paper. Head Neck Oncol 3:38.1–38.8

    Google Scholar 

  35. Stepp H, Beck T, Pongartz T et al (2007) ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol 26:157–164

    Article  CAS  Google Scholar 

  36. Guyon L, Ascencio M, Collinet P, Mordon S (2012) Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer. Photodiagn Photodyn Ther 9:16–31

    Article  Google Scholar 

  37. Pogue BW, Samkoe KS, Gibbs-Strauss SL, Davis SC (2010) Fluorescent molecular imaging and dosimetry tools in photodynamic therapy. Methods Mol Biol 635:207–222

    Article  CAS  Google Scholar 

  38. http://www.biospec.ru

  39. Warren CB, Lohser S, Chang S, Bailin PA, Maytin EV (2009) In-vivo fluorescence dosimetry of aminolevulinate-based protoporphyrin IX (PpIX) accumulation in human nonmelanoma skin cancers and precancers. Proc SPIE 7380:73801M-1–73801M-8

    Article  Google Scholar 

  40. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–38

    Article  Google Scholar 

  41. Vasilchenko SY et al (2010) Application of aluminum phthalocyanine nanoparticles for fluorescent diagnostics in dentistry and skin autotransplantology. J Biophoton 3:336–346

    Article  CAS  Google Scholar 

  42. Kircher MF, de la Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834

    Article  CAS  Google Scholar 

  43. Rück A, Hülshoff CH, Kinzler I, Becker W, Steiner R (2007) SLIM: a new method for molecular imaging. Micr Res Techn 70:485–492

    Article  Google Scholar 

  44. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, Berlin Heidelberg (Springer Series in Chemical Physics)

    Book  Google Scholar 

  45. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-Reduction ratio studies of mitochondria in freeze-trapped samples. J Biol Chem 254:4764–4771

    CAS  Google Scholar 

  46. Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. PNAS 104(49):19494–19499

    Article  CAS  Google Scholar 

  47. Li D, Zheng W, Qu JY (2008) Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence. Opt Lett 33:2365–2367

    Article  Google Scholar 

  48. Kinzler I, Haseroth E, Hauser C, Rück A (2007) Role of mitochondria in cell death induced by Photophrin-PDT and ursodeoxycholic acid by means of SLIM. Photochem Photobiol Sci 6:1332–1340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiner, R. (2014). Diagnostic and Laser Measurements in PDT. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_4

Download citation

Publish with us

Policies and ethics