Skip to main content

Functional Targeting of Bacteria: A Multimodal Construct for PDT and Diagnostics of Drug-Resistant Bacteria

  • Chapter
  • First Online:
Photodynamic Therapy

Abstract

A multimodal construct that targets functionality unique to pathogens, but typically absent in mammals, is the focus of this chapter. A brief overview of antimicrobial photodynamic therapy (PDT) and targeting strategies is provided for context only, followed by the development of the functional targeting that is the substance of this chapter. Deeper reviews on PDT and antimicrobial PDT are topics of other chapters in this book, and other publications. The constructs termed β-lactamase enzyme-activated photosensitizer (β-LEAP)/β-lactamase enzyme-activated fluorophore (β-LEAF) and their potential applications and significance are described in the context of existing technologies. The conclusions with the current state of the art is that this methodology may provide a practical and rapid test for establishing the utility of antibiotics to specific infections, thus reducing the empirical use of these drugs and lowering the incidence of development of drug-resistant pathogens. A less developed aspect of the chapter is the potential for the use of these same constructs in PDT, where they can be used to eradicate lactamase-based drug-resistant bacteria that survive conventional antibiotic treatments, in addition to drug-sensitive bacteria. The chapter ends with a perspective on the broader potential of this platform in microbiology and parasitology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeBellis RJ, Zdanawicz M (2000) Bacteria battle back: addressing antibiotic resistance. Massachusetts College of Pharmacy and Health Sciences, Boston. http://www.tufts.edu/med/apua/Educ/CME/BBB.pdf. Accessed 5 Feb 2009

  2. de Lencastre H et al (1991) Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 35(4):632–639

    Article  Google Scholar 

  3. Le Thomas I et al (2001) In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother 48(4):553–555

    Article  Google Scholar 

  4. Pollack A (2010) Rising threat of infections unfazed by antibiotics. New York Times, 27 Feb 2010

    Google Scholar 

  5. New antibiotics: what’s in the pipeline? The conversation 7 Dec 2012. http://theconversation.edu.au/new-antibiotics-whats-in-the-pipeline-10724

  6. Radovic-Moreno AF et al (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5):4279–4287

    Article  CAS  Google Scholar 

  7. Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1(4):201–210

    Article  CAS  Google Scholar 

  8. Fothergill JL, Winstanley C, James CE (2012) Novel therapeutic strategies to counter Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther 10(2):219–235

    Article  CAS  Google Scholar 

  9. Romero M, Acuna L, Otero A (2012) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6(1):2–12

    Article  CAS  Google Scholar 

  10. Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231(4):366–377

    CAS  Google Scholar 

  11. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300(6):357–362

    Article  CAS  Google Scholar 

  12. Rodriguez-Rubio L et al (2012) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol: 1–8

    Google Scholar 

  13. Wolska KI, Grzes K, Kurek A (2012) Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol J Microbiol 61(2):95–104

    CAS  Google Scholar 

  14. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450

    Article  CAS  Google Scholar 

  15. Raab O (1900) Uber die wirkung fluoriziender stoffe auf infusorien. Zeit Biol 39:524–546

    CAS  Google Scholar 

  16. von Tappeiner H (1904) Zur kenntis der lichtwirkenden (fluoreszierenden) stoffe 1:579–580

    Google Scholar 

  17. Friedberg JS et al (2004) Phase II trial of pleural photodynamic therapy and surgery for patients with non-small-cell lung cancer with pleural spread. J Clin Oncol 22(11):2192–2201

    Article  CAS  Google Scholar 

  18. Baas P et al (1997) Photodynamic therapy as adjuvant therapy in surgically treated pleural malignancies. Br J Cancer 76(6):819–826

    Article  CAS  Google Scholar 

  19. Hahn NM et al (2006) Hoosier oncology group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 12(20 Pt 1):6094–6099

    Article  CAS  Google Scholar 

  20. Maisch T (2009) A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem 9(8):974–983

    Article  CAS  Google Scholar 

  21. Kashef N et al (2011) Photodynamic inactivation of drug-resistant bacteria isolated from diabetic foot ulcers. Iran J Microbiol 3(1):36–41

    CAS  Google Scholar 

  22. Topaloglu N, Gulsoy M, Yuksel S (2013) Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg 31(4):155–162

    Google Scholar 

  23. Giuliani F et al (2010) In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54(2):637–642

    Article  CAS  Google Scholar 

  24. Pedigo LA, Gibbs AJ, Scott RJ, Street CN (2009) Absence of bacterial resistance following repeat exposure to photodynamic therapy. In: Proceedings of SPIE, vol 7380. Photodynamic therapy: back to the future, 73803H

    Google Scholar 

  25. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13–28

    Article  CAS  Google Scholar 

  26. Jori G et al (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38(5):468–481

    Article  Google Scholar 

  27. Akilov OE et al (2007) Photodynamic therapy for cutaneous leishmaniasis: the effectiveness of topical phenothiaziniums in parasite eradication and Th1 immune response stimulation. Photochem Photobiol Sci 6(10):1067–1075

    Article  CAS  Google Scholar 

  28. Akilov OE et al (2007) Parasiticidal effect of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol 16(8):651–660

    Article  CAS  Google Scholar 

  29. Asilian A, Davami M (2006) Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of old world cutaneous leishmaniasis: a placebo-controlled, randomized clinical trial. Clin Exp Dermatol 31(5):634–637

    Article  CAS  Google Scholar 

  30. Wainwright M, Baptista MS (2011) The application of photosensitisers to tropical pathogens in the blood supply. Photodiagnosis Photodyn Ther 8(3):240–248

    Article  CAS  Google Scholar 

  31. Baptista MS, Wainwright M (2011) Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz J Med Biol Res 44(1):1–10

    Article  CAS  Google Scholar 

  32. Lyon JP et al (2011) Photodynamic therapy for pathogenic fungi. Mycoses 54(5):e265–e271

    Article  Google Scholar 

  33. Lyon JP et al (2011) Photodynamic antifungal therapy against chromoblastomycosis. Mycopathologia 172(4):293–297

    Article  CAS  Google Scholar 

  34. Scwingel AR et al (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30(8):429–432

    Article  CAS  Google Scholar 

  35. Calzavara-Pinton PG et al (2004) Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatol Photoimmunol Photomed 20(3):144–147

    Article  CAS  Google Scholar 

  36. Marotti J et al (2009) Photodynamic therapy can be effective as a treatment for herpes simplex labialis. Photomed Laser Surg 27(2):357–363

    Article  Google Scholar 

  37. Rossi R et al (2009) Photodynamic treatment for viral infections of the skin. G Ital Dermatol Venereol 144(1):79–83

    CAS  Google Scholar 

  38. Kaufman RH et al (1978) Treatment of genital herpes simplex virus infection with photodynamic inactivation. Am J Obstet Gynecol 132(8):861–869

    CAS  Google Scholar 

  39. Kelley JP, Rashid RM (2011) Phototherapy in the treatment of cutaneous herpesvirus manifestations. Cutis 88(3):140–148

    Google Scholar 

  40. Costa L et al (2012) Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 4(7):1034–1074

    Article  Google Scholar 

  41. Giomi B et al (2012) Off label treatments of genital warts: the role of photodynamic therapy. G Ital Dermatol Venereol 147(5):467–474

    CAS  Google Scholar 

  42. O’Riordan K et al (2007) Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection. Photochem Photobiol Sci 6(10):1117–1123

    Article  Google Scholar 

  43. O’Riordan K et al (2006) Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob Agents Chemother 50(5):1828–1834

    Article  Google Scholar 

  44. Lambrechts SA et al (2005) Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4(7):503–509

    Article  CAS  Google Scholar 

  45. Gad F et al (2004) Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 3(5):451–458

    Article  CAS  Google Scholar 

  46. Gad F et al (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agents Chemother 48(6):2173–2178

    Article  CAS  Google Scholar 

  47. Zheng X et al (2009) Exploiting a bacterial drug-resistance mechanism: a light-activated construct for the destruction of MRSA. Angew Chem 121(12):2182–2185

    Article  Google Scholar 

  48. Hamblin MR et al (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75(1):51–57

    Article  CAS  Google Scholar 

  49. Mihu MR, Martinez LR (2011) Novel therapies for treatment of multi-drug resistant Acinetobacter baumannii skin infections. Virulence 2(2):97–102

    Article  Google Scholar 

  50. Bedwell J et al (1990) In vitro killing of Helicobacter pylori with photodynamic therapy. Lancet 335(8700):1287

    Article  CAS  Google Scholar 

  51. Brown S (2012) Clinical antimicrobial photodynamic therapy: phase II studies in chronic wounds. J Natl Compr Canc Netw 10(Suppl 2):S80–S83

    Google Scholar 

  52. Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3(5):412–418

    Article  CAS  Google Scholar 

  53. Kharkwal GB et al (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43(7):755–767

    Google Scholar 

  54. Raghavendra M, Koregol A, Bhola S (2009) Photodynamic therapy: a targeted therapy in periodontics. Aust Dent J 54(Suppl 1):S102–S109

    Article  Google Scholar 

  55. Tang HM, Hamblin MR, Yow CM (2007) A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens. J Infect Chemother 13(2):87–91

    Article  Google Scholar 

  56. Chen B et al (2006) Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr 16(4):279–305

    Article  Google Scholar 

  57. Verma S et al (2007) Strategies for enhanced photodynamic therapy effects. Photochem Photobiol 83(5):996–1005

    Article  CAS  Google Scholar 

  58. Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17(3):245–254

    CAS  Google Scholar 

  59. Rai P et al (2010) Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 62(11):1094–1124

    Article  CAS  Google Scholar 

  60. Friedberg JS et al (1991) Antibody-targeted photolysis. Bacteriocidal effects of Sn (IV) chlorin e6-dextran-monoclonal antibody conjugates. Ann N Y Acad Sci 618:383–393

    Article  Google Scholar 

  61. Strong L, Yarmush DM, Yarmush ML (1994) Antibody-targeted photolysis. Photophysical, biochemical, and pharmacokinetic properties of antibacterial conjugates. Ann N Y Acad Sci 745:297–320

    Article  CAS  Google Scholar 

  62. Ferro S et al (2007) Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int J Biochem Cell Biol 39(5):1026–1034

    Article  CAS  Google Scholar 

  63. George S, Hamblin MR, Kishen A (2009) Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem Photobiol Sci 8(6):788–795

    Article  CAS  Google Scholar 

  64. Pagonis TC et al (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 36(2):322–328

    Article  Google Scholar 

  65. Lee YE, Kopelman R (2011) Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol 726:151–178

    Article  CAS  Google Scholar 

  66. Longo JPF, Muehlmann LA, de Azevedo RB (2011) Nanostructured carriers for photodynamic therapy applications in microbiology science against microbial pathogens: communicating current research and technological advances In: Méndez-Vilas A (ed), pp 189–196

    Google Scholar 

  67. Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92(Suppl):55S–64S

    Article  Google Scholar 

  68. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39(6):1211–1233

    Article  CAS  Google Scholar 

  69. Livermore DM (1995) Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8(4):557–584

    CAS  Google Scholar 

  70. Rice LB (2012) Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc 87(2):198–208

    Article  CAS  Google Scholar 

  71. Verma S et al (2009) Antimicrobial photodynamic efficacy of side-chain functionalized benzo[a]phenothiazinium dyes. Photochem Photobiol 85(1):111–118

    Article  CAS  Google Scholar 

  72. Sallum UW et al (2010) Rapid functional definition of extended spectrum beta-lactamase activity in bacterial cultures via competitive inhibition of fluorescent substrate cleavage. Photochem Photobiol 86(6):1267–1271

    Article  CAS  Google Scholar 

  73. Bergeron MG, Ouellette M (1998) Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. J Clin Microbiol 36(8):2169–2172

    CAS  Google Scholar 

  74. Byl B et al (1999) Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy for bacteremia. Clin Infect Dis 29(1):60–66

    Article  CAS  Google Scholar 

  75. Rice LB (2011) Rapid diagnostics and appropriate antibiotic use. Clin Infect Dis 52(Suppl 4):S357–S360

    Article  Google Scholar 

  76. Motulsky HC, Christopoulos A (2004) A fitting models to biological data using linear and nonlinear regression. Oxford University Press, New York

    Google Scholar 

  77. Ericsson HM, Sherris JC (1971) Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol 217: Suppl 217:1+

    Google Scholar 

  78. Bauer AW et al (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    CAS  Google Scholar 

  79. Bauer AW et al (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 36(3):49–52

    CAS  Google Scholar 

  80. CLSI (2009) Performance standards for antimicrobial disk susceptibility tests; approved standard—10th edition. CLSI document M2-A10. Clinical and Laboratory Standards Institute, Wayne, 29(1)

    Google Scholar 

  81. CLSI (2011) Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement; M100-S21. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  82. CLSI (2012) Performance standards for antimicrobial susceptibility testing: twenty-second informational supplement; M100-S22. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  83. CLSI (2012) Performance standards for antimicrobial disk susceptibility tests; approved standard—11th edition. CLSI document M02-A11, vol 32(1). Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  84. Brook I (1989) Inoculum effect. Rev Infect Dis 11(3):361–368

    Article  CAS  Google Scholar 

  85. Nannini EC et al (2009) Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 53(8):3437–3441

    Article  CAS  Google Scholar 

  86. Nannini EC et al (2010) Determination of an inoculum effect with various cephalosporins among clinical isolates of methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 54(5):2206–2208

    Article  CAS  Google Scholar 

  87. Bryant RE, Alford RH (1977) Unsuccessful treatment of Staphylococcal endocarditis with cefazolin. JAMA 237(6):569–570

    Article  CAS  Google Scholar 

  88. Fernandez-Guerrero ML, de Gorgolas M (2005) Cefazolin therapy for Staphylococcus aureus bacteremia. Clin Infect Dis 41(1):127

    Article  Google Scholar 

  89. Nannini EC, Singh KV, Murray BE (2003) Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 37(9):1194–1198

    Article  Google Scholar 

  90. Quinn EL et al (1973) Clinical experiences with cefazolin and other cephalosporins in bacterial endocarditis. J Infect Dis 128: Suppl:S386–389

    Google Scholar 

  91. Livermore DM, Brown DF (2001) Detection of beta-lactamase-mediated resistance. J Antimicrob Chemother 48(Suppl 1):59–64

    Article  CAS  Google Scholar 

  92. Kilic E, Yalinay Cirak M (2006) Comparison of staphylococcal beta-lactamase detection methods. FABAD J Pharm Sci 31:79–84)

    Google Scholar 

  93. Haveri M et al (2005) Comparison of phenotypic and genotypic detection of penicillin G resistance of Staphylococcus aureus isolated from bovine intramammary infection. Vet Microbiol 106(1–2):97–102

    Article  CAS  Google Scholar 

  94. Vesterholm-Nielsen M et al (1999) Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta Vet Scand 40(3):279–286

    CAS  Google Scholar 

  95. Martineau F et al (2000) Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. The ESPRIT trial. J Antimicrob Chemother 46(4):527–534

    Article  CAS  Google Scholar 

  96. Strommenger B et al (2003) Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 41(9):4089–4094

    Article  CAS  Google Scholar 

  97. Malhotra-Kumar S et al (2005) Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother 49(11):4798–4800

    Article  CAS  Google Scholar 

  98. Zlokarnik G et al (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279(5347):84–88

    Article  CAS  Google Scholar 

  99. Gao W et al (2003) Novel fluorogenic substrates for imaging beta-lactamase gene expression. J Am Chem Soc 125(37):11146–11147

    Article  CAS  Google Scholar 

  100. Xing B, Khanamiryan A, Rao J (2005) Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 127(12):4158–4159

    Article  CAS  Google Scholar 

  101. Nord O, Gustrin A, Nygren PA (2005) Fluorescent detection of beta-lactamase activity in living Escherichia coli cells via esterase supplementation. FEMS Microbiol Lett 242(1):73–79

    Article  CAS  Google Scholar 

  102. Kong Y et al (2010) Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci U S A 107(27):12239–12244

    Article  CAS  Google Scholar 

  103. Marlowe EM et al (2011) Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 49(4):1621–1623

    Article  CAS  Google Scholar 

  104. Malhotra-Kumar S et al (2008) Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococcus species. J Clin Microbiol 46(5):1577–1587

    Article  Google Scholar 

  105. Sturenburg E (2009) Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 7:Doc06

    Google Scholar 

  106. Prilutsky D et al (2011) Differentiation between viral and bacterial acute infections using chemiluminescent signatures of circulating phagocytes. Anal Chem 83(11):4258–4265

    Article  CAS  Google Scholar 

  107. Foster JS, Sallum UW, Slatko B, Hasan T (2012) Development of photodynamic therapy for parasitic filarial nematodes. In: Proceedings of 36th meeting of the American society for photobiology, Montreal (abstract no. MN8-1)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge research funding from Department of Defense/Air Force Office of Research (DOD/AFOSR) (Grant number FA9550-11-1-0331), and NIH/NIBIB (National Institute of Biomedical Imaging and Bioengineering) (Point of Care Technology in Primary Care) through CIMIT (Center for Integration of Medicine and Innovation Technology) (Grant no.U54 EB015408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyaba Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, S., Hasan, T. (2014). Functional Targeting of Bacteria: A Multimodal Construct for PDT and Diagnostics of Drug-Resistant Bacteria. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_11

Download citation

Publish with us

Policies and ethics