Skip to main content

History of Photodynamic Therapy

  • Chapter
  • First Online:
Photodynamic Therapy

Abstract

Photodynamic therapy (PDT) is a form of phototherapy that involves three key components: a photosensitizer, a light source, and tissue oxygen. When these components are combined together, they become toxic to the targeted cells.

From Ancient Egyptians to Present Day

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang SS, Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8:154–163

    Article  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  Google Scholar 

  3. Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 4(3):283–293

    CAS  Google Scholar 

  4. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  Google Scholar 

  5. Daniell MD, Hill JS (1991) A history of photodynamic therapy. Aust N Z J Surg 61:340–348

    Article  CAS  Google Scholar 

  6. Moan J, Peng Q (2003) European society photobiology. Photodynamic therapy (comprehensive series in photochemical and photobiological sciences). Chapter 1: an outline of the history of PDT. The royal society of chemistry, pp 1–9

    Google Scholar 

  7. McDonagh AF (2001) Phototherapy: from ancient Egypt to the new millennium. J Perinatol 21:7–12

    Article  Google Scholar 

  8. Needham J, Gwei-Djen L (1983) Science and civilisation in China, vol 5, part 5. Cambridge University Press, Cambridge, 12, p 181–184

    Google Scholar 

  9. Hobday R (1999) The healing sun: sunlight and health in the 21st century. Findhorn press, Scotland, p 90

    Google Scholar 

  10. Fahmy IR, Abu-Shady H (1948) Ammi majus Linn: The isolation and properties of ammoidin, ammidin and majudin, and their effect in the treatment of leukoderma. Q J Pharmacol 21:499–503

    CAS  Google Scholar 

  11. Koeing C (2005) Specilized Hydro-, Balneo- and medicinal bath therapy. iUniverse Inc., Bloomington, p 49

    Google Scholar 

  12. Milhench H (2007) Flavors of Slovenia: food and wine from central Europe’s hidden gem. Hippocrene books, Inc., New York, p 121

    Google Scholar 

  13. Hausmann WH (1910) Die sensibilisierende Wirkung des Hamatoporphyrins. Biochem Z 30:276–316

    Google Scholar 

  14. Finsen NR (1903) Remarks on the red-light treatment of small-pox. Br Med J 1:1297

    Article  CAS  Google Scholar 

  15. Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 17:173–186

    Article  CAS  Google Scholar 

  16. Jesionek H, Tappeiner H (1905) Zur Behandlung der Hautcarcinome mit fluoreszierenden Stoffen. Dtsch Arch Klin Med 82:223–226

    Google Scholar 

  17. Hausmann WH (1908) Die sensibilisierende Wirkung tierischer Farbstoffe und ihre physiologische Bedeutung. Wien Klin Wochenschr 21:1527–1529

    Google Scholar 

  18. Figge FHJ, Weiland GS, Manganiello OJ (1948) Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med 68:640–641

    Article  CAS  Google Scholar 

  19. Lipson RL, Baldes EJ, Olsen AM (1961) The use of a derivative of hematoporphyrin in tumor detection. J Nat Cancer Inst 26:1–8

    CAS  Google Scholar 

  20. Lipson RL, Gray MJ, Baldes EJ (1966) Hematoporphyrin derivative for detection and management of cancer. In: Proceedings of the 9th international cancer congress. Tokyo, Japan, p 393

    Google Scholar 

  21. Dougherty TJ (1987) Studies on the structure of porphyrins contained in Photofrin II. Photochem Photobiol 46:569–573

    Article  CAS  Google Scholar 

  22. Dougherty TJ (1989) Photodynamic therapy—new approaches. Semin Surg Oncol 5(1):6–16

    Article  CAS  Google Scholar 

  23. El-Mofty AM (1968) Vitiligo and Psoralens. Pergamon Press, Oxford, p 147

    Google Scholar 

  24. Hönigsmann H (2013) History of phototherapy in dermatology. Photochem Photobiol Sci 12:16–21

    Article  Google Scholar 

  25. Dawe RS, Cameron H, Yule S, Man I, Wainwright NJ, Ibbotson SH, Ferguson J (2003) A randomized controlled trial of Narrowband ultraviolet B vs. bath-psoralen plus ultraviolet a photochemotherapy for psoriasis. Br J Dermatol 148:1194–1204

    Article  CAS  Google Scholar 

  26. Roelandts R (1991) The history of photochemotherapy. Photodermatol Photoimmunol Photomed 8:184–189

    CAS  Google Scholar 

  27. Hönigsmann H, Jaschke E, Gschnait F, Brenner W, Fritsch P, Wolff K (1979) 5-Methoxypsoralen (Bergapten) in photochemotherapy of psoriasis. Br J Dermatol 101:369–378

    Article  Google Scholar 

  28. Stern RS, Nichols KT, Väkevä LH (1997) Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA follow-up study. N Engl J Med 336:1041–1045

    Article  CAS  Google Scholar 

  29. Barbagallo J, Spann CT, Tutrone WD, Weinberg JM (2001) Narrowband UVB phototherapy for the treatment of psoriasis: a review and update. Cutis J 68:345–347

    CAS  Google Scholar 

  30. Allison RR, Downie GH, Cuenca R, Hu X, Childs CJH, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1(1):27–42

    Article  CAS  Google Scholar 

  31. Nyokong T, Ahsen V (2012) Photosensitizers in medicine, environment, and security. In: Heuck G, Lange N (eds) Chapter 8: exogenously induced endogenous photosensitizers. Springer, New York, p 391

    Google Scholar 

  32. Perria C, Capuzzo T, Cavagnaro G, Datti R, Francaviglia N, Rivano C, Tercero VE (1980) Fast attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci 24:119–129

    CAS  Google Scholar 

  33. Karagianis G, Hill JS, Stylli SS, Kaye AH, Varadaxis NJ, Reiss JA, Phillips DR (1996) Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma. Br J Cancer 73:514–521

    Article  CAS  Google Scholar 

  34. Szurko A, Kramer-Marek G, Widel M, Ratuszna A, Habdas J, Kus P (2003) Photodynamic effects of two water soluble porphyrins evaluated on human malignant melanoma cells in vitro. Acta Biochim Pol 50:1165–1174

    CAS  Google Scholar 

  35. Daicoviciu D, Filip A, Ion RM, Clichici S, Decea N, Muresan A (2010) Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats. Folia Biol (Praha) 57:12–19

    Google Scholar 

  36. Li HT, Song XY, Yang C, Li Q, Tang D, Tian WR, Liu Y (2013) Effect of hematoporphyrin monomethyl ether-mediated PDT on the mitochondria of canine breast cancer cells. Photodiagn Photodyn Ther

    Google Scholar 

  37. Muller PJ, Wilson BC (1995) Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol 11:346–354

    Article  CAS  Google Scholar 

  38. Marks PV, Belchetz PE, Saxena A, Igbaseimokumo U, Thomson S, Nelson M, Stringer MR, Holroyd JA, Brown SB (2000) Effect of photodynamic therapy on recurrent pituitary adenomas: clinical phase I/II trial–an early report. Br J Neurosurg 14:317–325

    Article  CAS  Google Scholar 

  39. Saczko J, Kulbacka J, Chwilkowska A et al (2005) The influence of photodynamic therapy on apoptosis in human melanoma cell line. Folia Histochem Cytobiol 43:129–132

    CAS  Google Scholar 

  40. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S (2006) Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med 38:516–521

    Article  Google Scholar 

  41. Cardoso DR, Libardi SH, Skibsted LH (2012) Riboflavin as a photosensitizer. Effects on human health and food quality. J Food Funct 3(5):487–502

    CAS  Google Scholar 

  42. Lilge L, Wilson BC (1998) Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers. J Clin Laser Med Surg 16:81–91

    CAS  Google Scholar 

  43. Stummer W, Reulen HJ, Novotny A, Stepp H, Tonn JC (2003) Fluorescence-guided resections of malignant gliomas–an overview. Acta Neurochir Suppl 88:9–12

    CAS  Google Scholar 

  44. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) ALA-Glioma study group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  Google Scholar 

  45. Nowis D, Legat M, Grzela T et al (2006) Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25:3365–3374

    Article  CAS  Google Scholar 

  46. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415:242–247

    Article  CAS  Google Scholar 

  47. Schmidt MH, Reichert KW 2nd, Ozker K, Meyer GA, Donohoe DL, Bajic DM, Whelan NT, Whelan HT (1999) Preclinical evaluation of benzoporphyrin derivative combined with a light-emitting diode array for photodynamic therapy of brain tumors. Pediatr Neurosurg 30:225–231

    Article  CAS  Google Scholar 

  48. Dhalla MS, Blinder KJ, Wickens J (2006) Photodynamic Therapy with Verteporfin in Age-related Macular Degeneration. US Sens Disord Rev 7–12

    Google Scholar 

  49. Hu L, Wu X, Song Y, Young LH, Gragoudas ES (2002) Photodynamic therapy of pigmented choroidal melanomas in rabbits. Zhonghua Yan Ke Za Zhi 38:491–494

    Google Scholar 

  50. Barbazetto IA, Lee TC, Rollins IS, Chang S, Abramson DH (2003) Treatment of choroidal melanoma using photodynamic therapy. Am J Ophthalmol 135:898–899

    Article  Google Scholar 

  51. Donaldson MJ, Lim L, Harper CA, Mackenzie JG, Campbell W (2005) Primary treatment of choroidal amelanotic melanoma with photodynamic therapy. Clin Exp Ophthalmol 33:548–549

    Article  Google Scholar 

  52. Baldea I, Filip AAG (2010) Photodynamic therapy in melanoma-an update. J Physiol Pharmacol 63:109–118

    Google Scholar 

  53. Mroz P, Huang YY, Szokalska A et al (2010) Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J 24:3160–3170

    Article  CAS  Google Scholar 

  54. Dabrowski JM, Arnaut LG, Pereira MM, Urbanska K, Stochel G (2012) Improved biodistribution, pharmacokinetics and photodynamic efficacy using a new photostable sulfonamide bacteriochlorin. Med Chem Commun 3:502–505

    Article  CAS  Google Scholar 

  55. Huang L, Zhiyentayev T, Xuan Y, Azhibek D, Kharkwal GB, Hamblin MR (2011) Photodynamic Inactivation of bacteria using polyethylenimine–chlorin(e6) conjugates: effect of polymer molecular weight, substitution ratio of chlorin(e6) and pH. Lasers Surg Med 43:313–323

    Article  Google Scholar 

  56. Spikes J (1990) New trends in photobiology: chlorins as photosensitizers in biology and medicine. J Photochem Photobiol, B 6:259–274

    Article  CAS  Google Scholar 

  57. Bachor R, Scholz M, Shea CR, Hasan T (1991) Mechanism of photosensitization by microsphere-bound chlorin e6 in human bladder carcinoma cells. Cancer Res 51:4410–4414

    CAS  Google Scholar 

  58. Schmidt-Erfurth U, Diddens H, Birngruber R, Hasan T (1997) Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates. Br J Cancer 75:54–61

    Article  CAS  Google Scholar 

  59. Gijsens A, Missiaen L, Merlevede W, de Witte P (2000) Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res 60:2197–2202

    CAS  Google Scholar 

  60. Hamblin MR, Miller JL, Rizvi I, Ortel B, Maytin EV, Hasan T (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61:7155–7162

    CAS  Google Scholar 

  61. Sheleg SV, Zhavrid EA, Khodina TV et al (2004) Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatol Photoimmunol Photomed 20:21–26

    Article  CAS  Google Scholar 

  62. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K (2011) Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1:230–239

    Article  CAS  Google Scholar 

  63. Park YJ, Lee WY, Hahn BS, Han MJ, Yang WI, Kim BS (1989) Chlorophyll derivatives–a new photosensitizer for photodynamic therapy of cancer in mice. Yonsei Med J 30:212–218

    CAS  Google Scholar 

  64. Gomaa I, Ali SE, El-Tayeb TA, Abdel-kader MH (2012) Chlorophyll derivative mediated PDT versus methotrexate: an in vitro study using MCF-7 cells. Photodiagn Photodyn Ther 9:362–368

    Article  CAS  Google Scholar 

  65. Lobel J, MacDonald IJ, Ciesielski MJ, Barone T, Potter WR, Pollina J, Plunkett RJ, Fenstermaker RA, Dougherty TJ (2001) 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy. Lasers Surg Med 29:397–405

    Article  CAS  Google Scholar 

  66. Senge MO, Johan C (2011) Brandt, Temoporfin (Foscan_,5,10,15,20Tetra(mhydroxyphenyl)chlorin) a second-generation photosensitizer. Photochem Photobiol 87:1240–1296

    Article  CAS  Google Scholar 

  67. Biel M, D’Cruz A, McCaffrey T (2002) Foscan-mediated photodynamic therapy (PDT) in the palliative treatment of patients with advanced head and neck cancer incurable with surgery or radiotherapy. Proc Am Soc Clin Oncol, p 21

    Google Scholar 

  68. Campbell SM, Gould DJ, Salter L, Clifford T, Curnow A (2004) Photodynamic therapy using meta-tetrahydroxyphenylchlorin (Foscan) for the treatment of vulval intraepithelial neoplasia. Br J Dermatol 151:1076–1080

    Article  CAS  Google Scholar 

  69. Sayed O, Zekri AN, Bahnasawy A, Ghaffar R, Khaled H, Abdel-Kader RM, Abdel Aziz AI, Abdel-Kader MH (2012) Foscan derivatives induce intrinsic appoptosis of human hepatocellular Carcinoma. 4th international meeting of the European platform for photodynamic medicine (EPPM) Brixen/Bressanone. South Tyrol, Italy, 2012

    Google Scholar 

  70. Sherifa G, Saad Zaghloul MA, Elsayed OF, Rueck A, Steiner R, Abdelaziz AI, Abdel-Kader MH (2013) Functional characterization of Fospeg, and its impact on cell cycle upon PDT of Huh7 hepatocellular carcinoma cell model. Photodiagn Photodyn Ther 10:87–94

    Article  CAS  Google Scholar 

  71. Namatame H, Akimoto J, Matsumura H, Haraoka J, Aizawa K (2008) Photodynamic therapy of C6-implanted glioma cells in the rat brain employing second-generation photosensitizer talaporfin sodium. Photodiagn Photodyn Ther 5:198–209

    Article  CAS  Google Scholar 

  72. Tsutsumi M, Miki Y, Akimoto J, Haraoka J, Aizawa K, Hirano K, Beppu M (2013) Photodynamic therapy with talaporfin sodium induces dose-dependent apoptotic cell death in human glioma cell lines. Biol Pharm Bull 36:215–2

    Google Scholar 

  73. Jia X, Jia L (2012) Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr Drug Metab 13:1119–1122

    Article  CAS  Google Scholar 

  74. Kolarova H, Nevrelova P, Bajgar R, Jirova D, Kejlova K, Strnad M (2007) In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol In Vitro 21:249–253

    Article  CAS  Google Scholar 

  75. Robertson CA, Abrahamse H (2010) The in vitro PDT efficacy of a novel metallophthalocyanine (MPc) derivative and established 5-ALA photosensitizing dyes against human metastatic melanoma cells. Lasers Surg Med 42:766–776

    Article  CAS  Google Scholar 

  76. Maduray K, Karsten A, Odhav B, Nyokong T (2011) In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy. J Photochem Photobiol, B 103:98–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Abdel-Kader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdel-Kader, M.H. (2014). History of Photodynamic Therapy. In: Abdel-Kader, M. (eds) Photodynamic Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39629-8_1

Download citation

Publish with us

Policies and ethics