Skip to main content

Texture Information in Melanocytic Skin Lesion Analysis Based on Standard Camera Images

  • Chapter
  • First Online:
Computer Vision Techniques for the Diagnosis of Skin Cancer

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The classification of melanocytic skin lesions is a very difficult task, and usually computer-aided diagnosis systems or screening systems focus on reproducing medical criteria as the ABCD rule. However, the texture information can also contribute significantly for the lesion classification, since malignant cases tends to present texture patterns different from benign cases. In this chapter, we detail five representative sets of features that have been proposed in the literature for the representation of melanocytic lesions texture information, and then we analyze how these features distinguish between malignant and benign classes using two well known classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results are presented in a line chart, and the exact number is not provided.

  2. 2.

    The higher histogram peaks are associated to healthy skin regions in Figs. 4c and d.

  3. 3.

    Cavalcanti and Scharcanski [6] suggest using \(\sigma = 1,\frac{11}{7}, \frac{15}{7}, ..., \frac{43}{7}\), and filter window sizes of \(7\sigma \times 7\sigma \).

References

  1. Alcon, J.F., Ciuhu, C., ten Kate, W., Heinrich, A., Uzunbajakava, N., Krekels, G., Siem, D., de Haan, G.: Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J. Sel. Top. Sig. Process. 3(1), 14–25 (2009)

    Article  Google Scholar 

  2. Allain, C., Cloitre, M.: Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 44, 3552–3558 (1991)

    Article  MathSciNet  Google Scholar 

  3. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2004)

    Google Scholar 

  4. Burroni, M., Corona, R., DellÉva, G., Sera, F., Bono, R., Puddu, P., Perotti, R., Nobile, F., Andreassi, L., Rubegni, P.: Melanoma computer-aided diagnosis: Reliability and feasibility study. Clin. Cancer Res. 10, 1881–1886 (2004)

    Article  Google Scholar 

  5. Cavalcanti, P.G., Scharcanski, J.: Shading Correction in Human Skin Color Images. In: Mishra, A., Nawaz, Z., Shahid, Z. (eds.) An Introductory Guide to the Emerging Áreas in Digital Image Procesing. 1ed. Sunnybank Hills, Australia: iConcept Press, 1–16 (2013a)

    Google Scholar 

  6. Cavalcanti, P.G., Scharcanski, J.: Automated prescreening of pigmented skin lesions using standard cameras. Comput. Med. Imaging Graph. 35(6), 481–491 (2011)

    Article  Google Scholar 

  7. Cavalcanti, P.G., Scharcanski, J.: Macroscopic pigmented skin lesion segmentation and its influence on lesion classification and diagnosis. In: Celebi, M.E. and Schaefer G. (eds.) Color Medical Image Analysis, Lecture Notes in Computational Vision and Biomechanics, vol. 6, pp. 15–39. Springer Netherlands (2013b)

    Google Scholar 

  8. Cavalcanti, P.G., Scharcanski, J., Lopes, C.B.O.: Shading attenuation in human skin color images. In: Proceedings 6th International Symposium on Visual Computing (ISVC 2010) (2010)

    Google Scholar 

  9. Cavalcanti, P.G., Scharcanski, J., Persia, L.E.D., Milone, D.H.: An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology, Society., pp. 5993–5996 (2011)

    Google Scholar 

  10. Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  11. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  12. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)

    Article  Google Scholar 

  13. Dermis: Dermatology information system. http://www.dermis.net (2011)

  14. Dermnet skin disease image atlas. http://www.dermnet.com (2009)

  15. Dreiseitl, S., Ohno-Machado, L., Kittler, H., Vinterbo, S., Billhardt, H., Binder, M.: A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J. Biomed. Inform. 34(1), 28–36 (2001)

    Article  Google Scholar 

  16. Dubuc, B., Quiniou, J.F., Roques-Carmes, C., Tricot, C., Zucker, S.W.: Evaluating the fractal dimension of profiles. Phys. Rev. A 39, 1500–1512 (1989)

    Article  MathSciNet  Google Scholar 

  17. Engasser, H.C., Warshaw, E.M.: Dermatoscopy use by us dermatologists: A cross-sectional survey. J. Am. Acad. Dermatol. 63(3), 412–419 (2010)

    Article  Google Scholar 

  18. Fikrle, T., Pizinger, K.: Digital computer analysis of dermatoscopical images of 260 melanocytic skin lesions; perimeter/area ratio for the differentiation between malignant melanomas and melanocytic nevi. J. Eur. Acad. Dermatol. Venereol. 21(1), 48–55 (2007)

    Article  Google Scholar 

  19. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  20. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  21. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York. (2001)

    Google Scholar 

  22. Iyatomi, H., Oka, H., Celebi, M., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K.: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput. Med. Imaging Graph. 32(7), 566–579 (2008)

    Article  Google Scholar 

  23. Johr, R.H.: Dermoscopy: alternative melanocytic algorithms - the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist. Clin. Dermatol. 20(3), 240–247 (2002)

    Article  Google Scholar 

  24. Lee, H.C.: Introduction to Color Imaging Science. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  25. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freedman and Co., New York (1983)

    Google Scholar 

  26. Manousaki, A.G., Manios, A.G., Tsompanaki, E.I., Panayiotides, J.G., Tsiftsis, D.D., Kostaki, A.K., Tosca, A.D.: A simple digital image processing system to aid in melanoma diagnosis in an everyday melanocytic skin lesion unit: a preliminary report. Int. J. Dermatol. 45(4), 402–410 (2006)

    Article  Google Scholar 

  27. Manousaki, A.G., Manios, A.G., Tsompanaki, E.I., Tosca, A.D.: Use of color texture in determining the nature of melanocytic skin lesionsa qualitative and quantitative approach. Comput. Biol. Med. 36(4), 419–427 (2006)

    Article  Google Scholar 

  28. Massone, C., Wurm, E.M.T., Hofmann-Wellenhof, R., Soyer, H.P.: Teledermatology: An update. Semin. Cutan. Med. Surg. 27(1), 101–105 (2008)

    Article  Google Scholar 

  29. Nachbar, F., Stolz, W., Merkle, T., Cognetta, A.B., Vogt, T., Landthaler, M., Bilek, P., Braun-Falco, O., Plewig, G.: The ABCD rule of dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)

    Article  Google Scholar 

  30. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  31. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machin. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  32. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  33. Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of pigmented skin lesions. i. pattern analysis of pigmented skin lesions. J. Am. Acad. Dermatol. 17, 571–583 (1987)

    Article  Google Scholar 

  34. Petrou, M., Petrou, C.: Image Processing: The Fundamentals, 2nd. edn. Wiley, New York (2010)

    Google Scholar 

  35. Rao, B.K., Marghoob, A.A., Stolz, W., Kopf, A.W., Slade, J., Wasti, Q., Schoenbach, S.P., De-David, M., Bart, R.S.: Can early malignant melanoma be differentiated from atypical melanocytic nevi by in vivo techniques? Skin Res. Technol. 3(1), 8–14 (1997)

    Article  Google Scholar 

  36. Sahoo, P., Barman, T., Davim, J.: Fractal Analysis in Machining. Computational Mechanics. Springer, SpringerBriefs in Applied Sciences and Technology, Berlin (2011)

    Google Scholar 

  37. Skvara, H., Teban, L., Fiebiger, M., Binder, M., Kittler, H.: Limitations of dermoscopy in the recognition of melanoma. Arch. Dermatol. 141, 155–160 (2005)

    Article  Google Scholar 

  38. Soh, L., Tsatsoulis, C.: Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

    Article  Google Scholar 

  39. Tabatabaie, K., Esteki, A., Toossi, P.: Extraction of skin lesion texture features based on independent component analysis. Skin Res. Technol. 15(4), 433–439 (2009)

    Article  Google Scholar 

  40. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H. (ed.) Handbook of Pattern Recognition and Computer Vision, 4th edn. World Scientific Publishing, River Edge (2010)

    Google Scholar 

  41. Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley-Interscience, New York (1998)

    Google Scholar 

  42. Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., Kovach, J.: Detection of cancer-specific markers amid massive mass spectral data. Proc. Natl. Acad. Sci. 100(25), 14666–14671 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zortea, M., Skrovseth, S., Godtliebsen, F.: Automatic learning of spatial patterns for diagnosis of skin lesions. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 5601–5604 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Scharcanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cavalcanti, P.G., Scharcanski, J. (2014). Texture Information in Melanocytic Skin Lesion Analysis Based on Standard Camera Images. In: Scharcanski, J., Celebi, M. (eds) Computer Vision Techniques for the Diagnosis of Skin Cancer. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39608-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39608-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39607-6

  • Online ISBN: 978-3-642-39608-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics