Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 876))

  • 3344 Accesses

Abstract

The main astrophysical manifestations of black holes are discussed. This includes an account of X-ray binaries and microquasars, active galactic nuclei, gamma-ray bursts, and ultra-luminous X-ray sources. Evidence for the existence of black holes in these sources is reviewed. Recent observational findings on stellar-mass, intermediate-mass, and supermassive black holes are presented and open observational challenges are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall not deal with neutron star XRBs here. See for example Migliari and Fender (2006), also Migliari et al. (2011) for a comprehensive analysis of the differences and similarities between neutron star and black hole XRBs.

  2. 2.

    Intending to extend it to AGN, a modified version of Eq. (6.1) that includes the mass of the black hole was introduced by Merloni et al. (2003) and Falcke et al. (2004). Its validity is not definitely established.

  3. 3.

    A few radio galaxies, Seyfert galaxies, and other AGN have been detected by Fermi as well.

  4. 4.

    EeV stands for “exa electron volt”; 1 EeV=1018 eV.

  5. 5.

    But Auger and HiRes disagree on the composition of cosmic rays.

  6. 6.

    We only detect the gamma-ray burst (i.e. the prompt emission) when the jet is pointing to us. If the jet axis is slightly shifted from the line of sight, “orphan” afterglow emission should be detectable, i.e. radio and optical emission without a preceding gamma-ray burst.

  7. 7.

    This process injects electron-positron pairs, \(\bar{\nu}+\nu\rightarrow e^{+} + e^{-}\).

  8. 8.

    Approximately by a factor \(\theta_{\mathrm{jet}}^{2}/2\), where θ jet is the opening angle of the jet.

  9. 9.

    For simplicity, throughout this chapter we shall use the expression “black hole(s)” implying “black hole candidate(s)”.

  10. 10.

    The orbital period is chosen as a variable because in most systems the accretion rate is expected to be determined by its value. Black holes and neutron star binaries with similar P orb should have similar accretion rates (in Eddington units), allowing proper comparison. See the discussion in Narayan et al. (2002).

  11. 11.

    These are the so-called “Z” sources. See, however, Kuulkers et al. (1997) and Lin et al. (2009).

  12. 12.

    Here we refer to the outbursts described in Sect. 6.2.1, triggered by an increase in the accretion rate.

  13. 13.

    Gravastars are discussed in Sect. 7.7.

  14. 14.

    The discovery of star S0-102 with a period of only 11.5 yr has been recently reported by Meyer et al. (2012). S0-102 has also been tracked along the full orbit.

  15. 15.

    At 8 kpc, 0.1 arcsec corresponds to ∼1.2×1016 cm.

  16. 16.

    The position of Sgr A* in the near infrared is much more difficult to determine. On the one hand, establishing an absolute reference frame in the near infrared at the galactic center is inherently difficult because of the lack of extragalactic reference sources; on the other hand Sgr A* is a very dim source at these wavelengths. The near infrared position matches the focus of the orbit os S0-2 within 0.01 arcsec. Various near infrared flares also agree with the position of Sgr A* at radio frequencies.

  17. 17.

    The components of the velocity of the Sun are ∼220–255 km s−1 and (7.16±0.38) km s−1 in and perpendicular to the galactic plane, respectively.

  18. 18.

    Sgr A* itself is very faint in the infrared, so an agglomerate of luminous stars is directly eliminated.

  19. 19.

    The Virial Theorem states that in a system of particles that interact through a potential of the form ∝1/r, the total time-averaged potential energy 〈U〉 and kinetic energy 〈T〉 satisfy 2〈T〉+〈U〉=0 in equilibrium state.

  20. 20.

    Iron lines are also detected in galactic X-ray binaries.

  21. 21.

    The existence of IMBHs in binaries, though, poses theoretical difficulties since no known binary evolutionary path leads to such system. The black hole could have been born isolated and later captured a companion (e.g. Hopman et al. 2004), but in this case all ULXs today should be found in globular or dense star clusters and most are not. Because of their large mass it is also unlikely that IMHBs have been born in clusters but later ejected (e.g. Miller and Hamilton 2002).

  22. 22.

    When the torque is taken to be zero at R in, the maximum temperature is not achieved at the disk inner edge but at a slightly larger radius.

  23. 23.

    Paczyński (1986) considered the possibility of detecting the shadow of black holes produced by the cosmic microwave background. This might be a way to spot isolated black holes.

  24. 24.

    www.eventhorizontelescope.com.

  25. 25.

    http://www.asc.rssi.ru/radioastron.

  26. 26.

    http://www.ligo.caltech.edu/.

  27. 27.

    http://www.ego-gw.it/.

  28. 28.

    www.geo600.org/.

References

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Science 326, 1512 (2009a)

    ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J. 701, L123 (2009b)

    ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Astrophys. J. 706, L56 (2009c)

    ADS  Google Scholar 

  • J. Abraham et al. (Pierre Auger Collaboration), Science 318, 938 (2007)

    ADS  Google Scholar 

  • M.A. Abramowicz, W. Kluźniak, J.-P. Lasota, Astron. Astrophys. 396, L31 (2002)

    ADS  MATH  Google Scholar 

  • V.A. Acciari, M. Beilicke, G. Blaylock et al., Astrophys. J. 679, 1427 (2008)

    ADS  Google Scholar 

  • F.A. Aharonian, Mon. Not. R. Astron. Soc. 332, 215 (2002)

    ADS  Google Scholar 

  • F.A. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., Astron. Astrophys. 460, 743 (2006)

    ADS  Google Scholar 

  • J. Albert, E. Aliu, H. Anderhub et al., Science 312, 1771 (2006)

    ADS  Google Scholar 

  • J. Albert, E. Aliu, H. Anderhub et al., Astrophys. J. 665, L51 (2007)

    ADS  Google Scholar 

  • R. Antonucci, Annu. Rev. Astron. Astrophys. 31, 473 (1993)

    ADS  Google Scholar 

  • J.M. Bardeen, in Gravitational Radiation and Gravitational Collapse, ed. by C. De Witt (1973), p. 132

    Google Scholar 

  • J.M. Bardeen, in Black Holes, ed. by C. De Witt, B.S. De Witt (1974), p. 215

    Google Scholar 

  • B. Balick, R.L. Brown, Astrophys. J. 194, 265 (1974)

    ADS  Google Scholar 

  • T.W. Baumgarte, AIP Conf. Proc. 861, 161 (2006)

    ADS  Google Scholar 

  • M. Begelman, Astrophys. J. 568, L97 (2002)

    ADS  Google Scholar 

  • T.M. Belloni, S.E. Motta, T. Muñoz-Darias, Bull. Astron. Soc. India 39, 409 (2011)

    ADS  Google Scholar 

  • J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  • V. Bosch-Ramon, G.E. Romero, J.M. Paredes, Astron. Astrophys. 447, 263 (2006)

    ADS  Google Scholar 

  • M. Böttcher, Astrophys. Space Sci. 309, 95 (2007)

    ADS  Google Scholar 

  • A.E. Broderick, A. Loeb, Mon. Not. R. Astron. Soc. 367, 905 (2006)

    ADS  Google Scholar 

  • A.E. Broderick, A. Loeb, Astrophys. J. 697, 1164 (2009)

    ADS  Google Scholar 

  • A.E. Broderick, R. Narayan, Astrophys. J. 638, L21 (2006)

    ADS  Google Scholar 

  • A.E. Broderick, A. Loeb, R. Narayan, Astrophys. J. 701, 1357 (2009a)

    ADS  Google Scholar 

  • A.E. Broderick, V.L. Fish, S.S. Doeleman, A. Loeb, Astrophys. J. 697, 45 (2009b)

    ADS  Google Scholar 

  • A.E. Broderick, V.L. Fish, S.S. Doeleman, A. Loeb, Astrophys. J. 735, 110 (2011)

    ADS  Google Scholar 

  • J. Casares, in Highlights of Spanish Astrophysics V, ed. by J.M. Diego, L.J. Goicoechea, J.I. González-Serrano, J. Gorgas. Astrophys. Space Sci. Proc. (2010), p. 3

    Google Scholar 

  • P. Chatterjee, L. Hernsquist, A. Loeb, Phys. Rev. Lett. 88, 121103 (2002a)

    ADS  Google Scholar 

  • P. Chatterjee, L. Hernsquist, A. Loeb, Astrophys. J. 572, 371 (2002b)

    ADS  Google Scholar 

  • D. Cseh, S. Corbel, P. Kaaret, C. Lang, F. Grisé, Z. Paragi, A. Tzioumis, V. Tudose, H. Feng, Astrophys. J. 749, 17 (2012)

    ADS  Google Scholar 

  • J. Centrella, AIP Conf. Proc. 1381, 98 (2011)

    ADS  Google Scholar 

  • S. Corbel, M.A. Nowak, R.P. Fender, A.K. Tzioumis, S. Markoff, Astron. Astrophys. 400, 1007 (2003)

    ADS  Google Scholar 

  • G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Astrophys. J. 424, 823 (1994)

    ADS  Google Scholar 

  • A. Cumming, Nucl. Phys. B, Proc. Suppl. 132, 435 (2004)

    ADS  Google Scholar 

  • S.W. Davis, R. Narayan, Y. Zhu, D. Barret, S.A. Farrell, O. Godet, M. Servillat, N.A. Webb, Astrophys. J. 734, 111 (2011)

    ADS  Google Scholar 

  • D. de Martino, T. Belloni, M. Falanga, A. Papitto, S. Motta, A. Pellizzoni, Y. Evangelista, G. Piano, N. Masetti, J.-M. Bonnet-Bidaud, M. Mouchet, K. Mukai, A. Possenti, Astron. Astrophys. 550, A89 (2013)

    Google Scholar 

  • J. Dexter, P.C. Fragile, Astrophys. J. 730, 36 (2011)

    ADS  Google Scholar 

  • S. Doeleman, J. Weintroub, A.E.E. Rogers, R. Plambeck, R. Freund, R.P.J. Tilanus, P. Friberg, L.M. Ziurys, J.M. Moran, B. Corey, K.H. Young, D.L. Smythe, M. Titus, D.P. Marrone, R.J. Cappallo, D.C.J. Bock, G.C. Bower, R. Chamberlin, G.R. Davis, T.P. Krichbaum, J. Lamb, H. Maness, A.E. Niell, A. Roy, P. Strittmatter, D. Werthimer, A.R. Whitney, D. Woody, Nature 455, 78 (2008)

    ADS  Google Scholar 

  • E.N. Dorband, M. Hemsendorf, D. Merritt, J. Comput. Phys. 185, 484 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  • G. Dubus, Astron. Astrophys. 456, 801 (2006)

    ADS  Google Scholar 

  • D. Eichler, M. Livo, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

    ADS  Google Scholar 

  • F. Eisenhauer et al., Messenger 143, 16 (2011)

    ADS  Google Scholar 

  • A.C. Fabian, K. Iwasawa, C.S. Reynolds, A.J. Young, Publ. Astron. Soc. Pac. 112, 1145 (2000)

    ADS  Google Scholar 

  • A.C. Fabian, A. Zoghbi, R.R. Ross, P. Uttley, L.C. Gallo, W.N. Brandt, A.J. Blustin, T. Boller, M.D. Caballero-Garcia, J. Larsson, J.M. Miller, G. Miniutti, G. Ponti, R.C. Reis, C.S. Reynolds, Y. Tanaka, A.J. Young, Nature 459, 540 (2009)

    ADS  Google Scholar 

  • A.C. Fabian, A. Zoghbi, D. Wilkins, T. Dwelly, P. Uttley, N. Schartel, G. Miniutti, L. Gallo, D. Grupe, S. Komossa, M. Santos-Lleó, Mon. Not. R. Astron. Soc. 419, 116 (2012)

    ADS  Google Scholar 

  • G. Fabbiano, Rev. Mex. Astron. Astrophys. Ser. Conf. 20, 46 (2004)

    ADS  Google Scholar 

  • M. Falanga, D. de Martino, J.M. Bonnet-Bidaud, T. Belloni, M. Mouchet, N. Masetti, K. Mukai, G. Matt, in Proceedings of the 8th INTEGRAL Workshop “The Restless Gamma-Ray Universe” (2010), p. 54

    Google Scholar 

  • H. Falcke, S. Markoff, Astron. Astrophys. 362, 113 (2000)

    ADS  Google Scholar 

  • H. Falcke, F. Melia, E. Agol, Astrophys. J. 528, L13 (2000)

    ADS  Google Scholar 

  • H. Falcke, E. Körding, S. Markoff, Astron. Astrophys. 414, 895 (2004)

    ADS  Google Scholar 

  • R. Fender, E. Körding, T. Belloni, P. Uttley, I. McHardy, T. Tzioumis, PoS(MQW6) 011 (2007)

    Google Scholar 

  • H. Feng, P. Kaaret, Astrophys. J. 668, 941 (2007a)

    ADS  Google Scholar 

  • H. Feng, P. Kaaret, Astrophys. J. 660, L113 (2007b)

    ADS  Google Scholar 

  • H. Feng, P. Kaaret, Astrophys. J. 696, 1712 (2009)

    ADS  Google Scholar 

  • H. Feng, P. Kaaret, Astrophys. J. 712, L169 (2010)

    ADS  Google Scholar 

  • H. Feng, R. Soria, New Astron. Rev. 55, 166 (2011)

    ADS  Google Scholar 

  • L. Ferrarese, D. Merritt, Astrophys. J. 539, L9 (2000)

    ADS  Google Scholar 

  • J.L. Friedman, J.R. Ipser, Astrophys. J. 314, 594 (1987)

    ADS  Google Scholar 

  • M.R. García, J.E. McClintock, R. Narayan, P. Callanan, D. Barret, S.S. Murray, Astrophys. J. 553, L47 (2001)

    ADS  Google Scholar 

  • K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, S. Tremaine, Astrophys. J. 539, L13 (2000)

    ADS  Google Scholar 

  • R. Genzel, F. Eisenhauer, S. Gillessen, Rev. Mod. Phys. 82, 3121 (2010)

    ADS  Google Scholar 

  • S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, Astrophys. J. 692, 1075 (2009a)

    ADS  Google Scholar 

  • S. Gillessen, F. Eisenhauer, T.K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, R. Genzel, Astrophys. J. 707, L114 (2009b)

    ADS  Google Scholar 

  • A.M. Ghez, S. Salim, N.N. Weinberg, J.R. Lu, T. Do, J.K. Dunn, K. Matthews, M. Morris, S. Yelda, E.E. Becklin, T. Kremenek, M. Milosavljevic, J. Naiman, Astrophys. J. 689, 1044 (2008)

    ADS  Google Scholar 

  • L.J. Greenhill, C.R. Gwinn, R. Antonucci, R. Barvainis, Astrophys. J. 472, L21 (1996)

    ADS  Google Scholar 

  • X. Han, T. An, J.-Y. Wang, J.-M. Lin, M.-J. Xie, H.-G. Xu, X.-Y. Hong, S. Frey, Res. Astron. Astrophys. 12, 1 (2012)

    Google Scholar 

  • S. Heinz, R.A. Sunyaev, Mon. Not. R. Astron. Soc. 343, L59 (2003)

    ADS  Google Scholar 

  • C. Hopman, S.F. Portegies Zwart, T. Alexander, Astrophys. J. Lett. 604, L101 (2004)

    ADS  Google Scholar 

  • P. Kaaret, S. Corbel, Astrophys. J. 697, 950 (2009)

    ADS  Google Scholar 

  • P. Kaaret, S. Corbel, A.H. Prestwich, A. Zezas, Science 299, 365 (2003)

    ADS  Google Scholar 

  • P. Kaaret, M.J. Ward, A. Zezas, Mon. Not. R. Astron. Soc. 351, L38 (2004)

    ADS  Google Scholar 

  • V. Kalogera, G. Baym, Astrophys. J. 470, L61 (1996)

    ADS  Google Scholar 

  • M.M. Kaufman-Bernadó, G.E. Romero, I.F. Mirabel, Astron. Astrophys. 385, L10 (2002)

    ADS  Google Scholar 

  • A.R. King, M.B. Davies, M.J. Ward, G. Fabbiano, M. Elvis, Astrophys. J. 552, L109 (2001)

    ADS  Google Scholar 

  • E. Körding, H. Falcke, S. Markoff, Astron. Astrophys. 382, L13 (2002)

    ADS  Google Scholar 

  • E. Kuulkers, M. van der Klis, T. Oosterbroek, J. van Paradijs, W.H.G. Lewin, Mon. Not. R. Astron. Soc. 287, 495 (1997)

    ADS  Google Scholar 

  • C.Y. Kuo, J.A. Braatz, J.J. Condon, C.M.V. Impellizzeri, K.Y. Lo, I. Zaw, M. Schenker, C. Henkel, M.J. Reid, J.E. Greene, Astrophys. J. 727, 20 (2011)

    ADS  Google Scholar 

  • J.H. Lacy, C.H. Townes, T.R. Geballe, D.J. Hollenbach, Astrophys. J. 241, 132 (1980)

    ADS  Google Scholar 

  • W.H.G. Lewin, J. van Paradijs, R.E. Taam, Space Sci. Rev. 62, 223 (1993)

    ADS  Google Scholar 

  • D. Lin, D. Altamirano, J. Homan, R.A. Remillard, R. Wijnands, T. Belloni, Astrophys. J. 699, 60 (2009)

    ADS  Google Scholar 

  • S.L. Liebling, C. Palenzuela, Living Rev. Relativ. 15, 6 (2012)

    ADS  Google Scholar 

  • J.-F. Liu, J.N. Bregman, J. Irwin, P. Seitzer, Astrophys. J. 581, L93 (2002)

    ADS  Google Scholar 

  • J.-F. Liu, J.N. Bregman, E. Lloyd-Davies, J. Irwin, C. Espaillat, P. Seitzer, Astrophys. J. 621, L17 (2005)

    ADS  Google Scholar 

  • J.-F. Liu, J. Orosz, J.N. Bregman, Astrophys. J. 745, 22 (2012)

    Google Scholar 

  • Q.Z. Liu, J. van Paradijs, E.P.J. van den Heuvel, Astron. Astrophys. 455, 1165 (2006)

    ADS  Google Scholar 

  • Q.Z. Liu, J. van Paradijs, E.P.J. van den Heuvel, Astron. Astrophys. 469, 807 (2007)

    ADS  Google Scholar 

  • J.-P. Luminet, Astron. Astrophys. 75, 228 (1979)

    ADS  Google Scholar 

  • A.I. MacFadyen, S.E. Woosley, Astrophys. J. 524, 262 (1999)

    ADS  Google Scholar 

  • F. Macchetto, A. Marconi, D.J. Axon, A. Capetti, W. Sparks, P. Crane, Astrophys. J. 489, 579 (1997)

    ADS  Google Scholar 

  • K. Makishima, A. Kubota, T. Mizuno, T. Ohnishi, M. Tashiro, Y. Aruga, K. Asai, T. Dotani, K. Mitsuda, Y. Ueda, S. Uno, K. Yamaoka, K. Ebisawa, Y. Kohmura, K. Okada, Astrophys. J. 535, 632 (2000)

    ADS  Google Scholar 

  • E. Maoz, Astrophys. J. 494, L181 (1998)

    ADS  Google Scholar 

  • J. McClintock, R. Remillard, in Compact Stellar X-Ray Sources, ed. by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • M.L. McConnell, J.M. Ryan, W. Collmar, V. Schoenfelder, H. Steinle, A.W. Strong, H. Bloemen, W. Hermsen, L. Kuiper, K. Bennett, B.F. Phlips, J.C. Ling, Astrophys. J. 543, 928 (2000)

    ADS  Google Scholar 

  • N.J. McConnell, C.-P. Ma, Astrophys. J. 764, 184 (2013)

    ADS  Google Scholar 

  • N.J. McConnell, C.-P. Ma, K. Gebhardt, S.A. Wright, J.D. Murphy, T.R. Lauer, J.R. Graham, D.O. Richstone, Nature 480, 215 (2011)

    ADS  Google Scholar 

  • A. Merloni, S. Heinz, T. Di Matteo, Mon. Not. R. Astron. Soc. 345, 1057 (2003)

    ADS  Google Scholar 

  • D. Merritt, P. Berczik, F. Laun, Astron. J. 133, 553 (2007)

    ADS  Google Scholar 

  • L. Meyer, A.M. Ghez, R. Schoedel, S. Yelda, A. Boehle, J.R. Lu, T. Do, M.R. Morris, E.E. Becklin, K. Matthews, Science 338, 84 (2012)

    ADS  Google Scholar 

  • S. Migliari, R.P. Fender, Mon. Not. R. Astron. Soc. 366, 79 (2006)

    ADS  Google Scholar 

  • S. Migliari, J.C.A. Miller-Jones, D.M. Russell, Mon. Not. R. Astron. Soc. 415, 2407 (2011)

    ADS  Google Scholar 

  • J.M. Miller, G. Fabbiano, M.C. Miller, A.C. Fabian, Astrophys. J. 585, L37 (2003)

    ADS  Google Scholar 

  • J.M. Miller, A.C. Fabian, M.C. Miller, Astrophys. J. 607, 931 (2004)

    ADS  Google Scholar 

  • M.C. Miller, D.P. Hamilton, Mon. Not. R. Astron. Soc. 330, 232 (2002)

    ADS  Google Scholar 

  • I.F. Mirabel, L.F. Rodríguez, Nature 392, 673 (1998)

    ADS  Google Scholar 

  • I.F. Mirabel, L.F. Rodríguez, B. Cordier, J. Paul, F. Lebrun, Nature 358, 215 (1992)

    ADS  Google Scholar 

  • M. Miyoshi, J. Moran, J. Herrnstein, L. Greenhill, N. Nakai, P. Diamond, M. Inoue, Nature 373, 127 (1995)

    ADS  Google Scholar 

  • T. Mizuno, A. Kubota, K. Makishima, Astrophys. J. 554, 1282 (2001)

    ADS  Google Scholar 

  • M. Moscibrodzka, C.F. Gammie, J.C. Dolence, H. Shiokawa, P.K. Leung, Astrophys. J. 706, 497 (2009)

    ADS  Google Scholar 

  • A. Mücke, R.J. Protheroe, R. Engel, J.P. Rachen, T. Stanev, Astropart. Phys. 18, 593 (2003)

    ADS  Google Scholar 

  • R. Mushotzky, Prog. Theor. Phys. Suppl. 155, 27 (2004)

    ADS  Google Scholar 

  • E. Nakar, Phys. Rep. 442, 166 (2007)

    ADS  Google Scholar 

  • R. Narayan, Astron. Geophys. 44, 6.22 (2003)

    Google Scholar 

  • R. Narayan, J.S. Heyl, Astrophys. J. 574, L139 (2002)

    ADS  Google Scholar 

  • R. Narayan, J.S. Heyl, Astrophys. J. 599, 419 (2003)

    ADS  Google Scholar 

  • R. Narayan, M.R. García, J.E. McClintock, Astrophys. J. 478, L79 (1997)

    ADS  Google Scholar 

  • R. Narayan, M.R. García, J.E. McClintock, in Proceedings of the Ninth Marcel Grossmann Meeting, ed. by V.G. Gurzadyan, R.T. Jantzen, R. Ruffini (World Scientific, Singapore, 2002), p. 405

    Google Scholar 

  • P.L. Nolan et al. (Fermi-LAT Collaboration), Astrophys. J. Suppl. Ser. 199, 31 (2012)

    ADS  Google Scholar 

  • J.A. Orosz, J.E. McClintock, J.P. Aufdenberg, R.A. Remillard, M.J. Reid, R. Narayan, L. Gou, Astrophys. J. 742, 84 (2011)

    ADS  Google Scholar 

  • F. Özel, D. Psaltis, R. Narayan, J.E. McClintock, Astrophys. J. 725, 1918 (2010)

    ADS  Google Scholar 

  • B. Paczyński, Nature 321, 419 (1986)

    ADS  Google Scholar 

  • B. Paczyński, Astrophys. J. 494, L45 (1998)

    ADS  Google Scholar 

  • M.W. Pakull, L. Mirioni, in Proceedings of the Symposium “New Visions of the X-Ray Universe in the XMM-Newton and Chandra Era” (2002)

    Google Scholar 

  • J.M. Paredes, J. Marti, M. Ribo, M. Massi, Science 288, 2340 (2000)

    ADS  Google Scholar 

  • B.M. Peterson, Publ. Astron. Soc. Pac. 105, 247 (1993)

    ADS  Google Scholar 

  • M.J. Reid, Int. J. Mod. Phys. D 18, 889 (2009)

    ADS  MATH  Google Scholar 

  • M.J. Reid, A. Brunthaler, Astrophys. J. 616, 872 (2004)

    ADS  Google Scholar 

  • R.A. Remillard, J.E. McClintock, Annu. Rev. Astron. Astrophys. 44, 49 (2006)

    ADS  Google Scholar 

  • F. Rao, H. Feng, P. Kaaret, Astrophys. J. 722, 620 (2010)

    ADS  Google Scholar 

  • M.T. Reynolds, J.M. Miller, Astrophys. J. Lett. 734, L17 (2011)

    ADS  Google Scholar 

  • M.M. Reynoso, M.C. Medina, G.E. Romero, Astron. Astrophys. 531, A30 (2011)

    ADS  Google Scholar 

  • C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    ADS  Google Scholar 

  • T.P. Roberts, J.C. Gladstone, A.D. Goulding, A.M. Swinbank, M.J. Ward, M.R. Goad, A.J. Levan, Astron. Nachr. 332, 398 (2011)

    ADS  Google Scholar 

  • G.E. Romero, M. Orellana, Astron. Astrophys. 439, 237 (2005)

    ADS  Google Scholar 

  • G.E. Romero, G.S. Vila, Astron. Astrophys. 485, 623 (2008)

    ADS  MATH  Google Scholar 

  • G.E. Romero, A.T. Okazaki, M. Orellana, S.P. Owocki, Astron. Astrophys. 474, 15 (2007)

    ADS  Google Scholar 

  • G.E. Romero, F.L. Vieyro, G.S. Vila, Astron. Astrophys. 519, A109 (2010)

    ADS  Google Scholar 

  • S. Sabatini, M. Tavani, E. Striani et al., Astrophys. J. 712, L10 (2010)

    ADS  Google Scholar 

  • B.J. Sams, A. Eckart, R.A. Sunyaev, Nature 382, 47 (1996)

    ADS  Google Scholar 

  • R.V. Shcherbakov, R.F. Penna, J.C. McKinney, Astrophys. J. 755, 133 (2012)

    ADS  Google Scholar 

  • R. Soria, Astron. Nachr. 332, 330 (2011)

    ADS  Google Scholar 

  • R. Soria, M. Cropper, C. Motch, Chin. J. Astron. Astrophys. 5, 153 (2005)

    ADS  Google Scholar 

  • R. Soria, M.W. Pakull, J.W. Broderick, S. Corbel, C. Motch, Mon. Not. R. Astron. Soc. 409, 541 (2010)

    ADS  Google Scholar 

  • T.E. Strohmayer, R.F. Mushotzky, Astrophys. J. 586, L61 (2003)

    ADS  Google Scholar 

  • A.D. Sutton, T.P. Roberts, D.J. Walton, J.C. Gladstone, A.E. Scott, Mon. Not. R. Astron. Soc. 432, 1154 (2012)

    ADS  Google Scholar 

  • Y. Tanaka, K. Nandra, A.C. Fabian, H. Inoue, C. Otani, T. Dotani, K. Hayashida, K. Iwasawa, T. Kii, H. Kunieda, F. Makino, M. Matsuoka, Nature 375, 659 (1995)

    ADS  Google Scholar 

  • M. Tavani, A. Bulgarelli, G. Piano et al., Nature 462, 620 (2009)

    ADS  Google Scholar 

  • D.F. Torres, S. Capozziello, G. Lambiase, Phys. Rev. D 62, 104012 (2000)

    ADS  Google Scholar 

  • C.M. Urry, P. Padovani, Publ. Astron. Soc. Pac. 107, 803 (1995)

    ADS  Google Scholar 

  • R.C.E. van den Bosch, K. Gebhardt, K. Gültekin, G. van de Ven, A. van der Wel, J.L. Walsh, Nature 491, 729 (2012)

    ADS  Google Scholar 

  • M. van der Klis, Astron. Nachr. 326, 798 (2005)

    ADS  Google Scholar 

  • M. van der Klis, in Compact Stellar X-Ray Sources, ed. by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • F.L. Vieyro, G.E. Romero, Astron. Astrophys. 542, A7 (2012)

    ADS  Google Scholar 

  • G.S. Vila, G.E. Romero, Mon. Not. R. Astron. Soc. 403, 1457 (2010)

    ADS  Google Scholar 

  • G.S. Vila, G.E. Romero, N.A. Casco, Astron. Astrophys. 538, A97 (2012)

    ADS  Google Scholar 

  • R.D. Viollier, D. Trautmann, G.B. Tupper, Phys. Lett. B 306, 79 (1993)

    ADS  Google Scholar 

  • N. Webb, D. Cseh, E. Lenc, O. Godet, D. Barret, S. Corbel, S. Farrell, R. Fender, N. Gehrels, I. Heywood, Science 337, 554 (2012)

    ADS  Google Scholar 

  • A. Yamauchi, N. Nakai, Y. Ishihara, P. Diamond, N. Sato, Publ. Astron. Soc. Jpn. 64, 103 (2012)

    ADS  Google Scholar 

  • Y.-J. Yang, A.K.H. Kong, D.M. Russell, F. Lewis, R. Wijnands, Mon. Not. R. Astron. Soc. 427, 2876 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, G.E., Vila, G.S. (2014). Evidence for Black Holes. In: Introduction to Black Hole Astrophysics. Lecture Notes in Physics, vol 876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39596-3_6

Download citation

Publish with us

Policies and ethics