Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 876))

  • 3353 Accesses

Abstract

This chapter presents a detailed account of all forms of accretion onto black holes. The basic expressions for spherical, cylindrical, and disk accretion are developed. Advection-dominated accretion is also discussed, as well as different accretion regimes in binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a second term η B(∇⋅v)δ ij in the stress tensor. The coefficient η B is the bulk viscosity, that we shall assume to be zero.

  2. 2.

    It is a common practice in the study of fluid dynamics to work with the total or material derivative of a function f(x,t), defined as df/dt=∂f/∂t+(v⋅∇)f. The second term is called the convective derivative.

  3. 3.

    Notice that Tr −1 and ρr 3/2.

  4. 4.

    See, however, Foglizzo and Ruffert (1997, 1999) for some general analytical results.

  5. 5.

    These amounts to assuming that the mean free path of the particles is much larger than the characteristic length scale of the problem, given by the accretion radius and the size of the accretor.

  6. 6.

    See Edgar (2004) for a proof of this statement.

  7. 7.

    In 2D simulations the shock is always attached to the accretor, although calculations by Foglizzo et al. (2005) suggest that it should get detached for γ∼3.

  8. 8.

    Notice that for a disk in rigid rotation ∂Ω/∂R=0 and the internal torques vanish.

  9. 9.

    The same criterion applies to the global stability of the disk under axisymmetric perturbations with kR≫1, where k is the wavenumber of the perturbation.

  10. 10.

    There is another possible solution with v(θ=0)=−ε′/2α. This is a generalization of the spherically symmetric Bondi accretion to viscous flows.

  11. 11.

    Narayan and Yi (1995b) adopted a value of the Eddington accretion rate of \(\dot{M}_{\mathrm{Edd}}=L_{\mathrm{Edd}}/0.1c^{2}\approx1.39\times 10^{18} M/M_{\odot}\ \mbox{g\,s}^{-1}\).

  12. 12.

    The viscous timescales in the inner regions of the disk, where the neutrinos are emitted, are much shorter than the typical timescales of variation of the accretion rate in the outer disk (di Matteo et al. 2002). Furthermore, Kohri and Mineshige (2002) have shown that for sufficiently large temperature and density (T∼1011 K, ρ∼1013 g cm−3) the timescale of positron/electron capture by nucleons (see text) and the timescale for neutrino diffusion in the vertical direction are both shorter than the accretion timescale. Under these conditions, the steady-state approximation is justified.

  13. 13.

    Degenerate matter does not add to the entropy of the flow.

  14. 14.

    In the strong magnetic field (∼1015 G) expected to exist in the central engines of GRBs, neutrinos can also create pairs through the reaction νν+e ++e , see e.g. Gvozdev and Ognev (2001).

  15. 15.

    The Coriolis force is not included in Eq. (4.196).

References

  • M. Abramowicz, B. Czerny, J.-P. Lasota, E. Szuszkiewicz, Astrophys. J. 332, 646 (1988)

    ADS  Google Scholar 

  • M. Abramowicz, X. Chen, S. Kato, J.-P. Lasota, O. Regev, Astrophys. J. Lett. 438, L37 (1995)

    ADS  Google Scholar 

  • M.A. Abramowicz, I.V. Igumenshchev, E. Quataert, R. Narayan, Astrophys. J. 565, 1101 (2002)

    ADS  Google Scholar 

  • M.A. Aloy, H.-T. Janka, E. Müller, Astron. Astrophys. 436, 273 (2005)

    ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Astrophys. J. 376, 214 (1991)

    ADS  Google Scholar 

  • M.C. Begelman, Mon. Not. R. Astron. Soc. 184, 53 (1978)

    ADS  Google Scholar 

  • M.C. Begelman, Mon. Not. R. Astron. Soc. 420, 2912 (2012)

    ADS  Google Scholar 

  • M.C. Begelman, D.L. Meier, Astrophys. J. 253, 873 (1982)

    ADS  Google Scholar 

  • A.M. Beloborodov, AIP Conf. Proc. 1054, 51 (2008)

    ADS  Google Scholar 

  • G. Bertin, G. Lodato, Astron. Astrophys. 350, 694 (1999)

    ADS  Google Scholar 

  • J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  • G.S. Bisnovatyi-Kogan, S.I. Blinnikov, Sov. Astron. Lett. 2, 191 (1976)

    ADS  Google Scholar 

  • G.S. Bisnovatyi-Kogan, S.I. Blinnikov, Astron. Astrophys. 59, 111 (1977)

    ADS  Google Scholar 

  • G.S. Bisnovatyi-Kogan, R.V.E. Lovelace, New Astron. Rev. 45, 663 (2001)

    ADS  Google Scholar 

  • G.S. Bisnovatyi-Kogan, Y.M. Kazhdan, A.A. Klypin, A.E. Lutskii, N.I. Shakura, Sov. Astron. 23, 201 (1979)

    ADS  Google Scholar 

  • R.D. Blandford, M.C. Begelman, Mon. Not. R. Astron. Soc. 303, L1 (1999)

    ADS  Google Scholar 

  • R.D. Blandford, M.C. Begelman, Mon. Not. R. Astron. Soc. 349, 68 (2004)

    ADS  Google Scholar 

  • J.M. Blondin, T.C. Pope, Astrophys. J. 700, 95 (2009)

    ADS  Google Scholar 

  • J.M. Blondin, E. Raymer, Astrophys. J. 752, 30 (2012)

    ADS  Google Scholar 

  • G. Bodo, A. Curir, Astron. Astrophys. 253, 318 (1992)

    ADS  Google Scholar 

  • S.V. Bogovalov, S.R. Kelner, Astron. Rep. 49, 57 (2005)

    ADS  Google Scholar 

  • S.V. Bogovalov, S.R. Kelner, Int. J. Mod. Phys. D 19, 339 (2010)

    ADS  MATH  Google Scholar 

  • H. Bondi, Mon. Not. R. Astron. Soc. 112, 95 (1952)

    MathSciNet  ADS  Google Scholar 

  • H. Bondi, F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273 (1944)

    ADS  Google Scholar 

  • I.A. Bonnell, M.R. Bate, Mon. Not. R. Astron. Soc. 336, 659 (2002)

    ADS  Google Scholar 

  • I.A. Bonnell, C.J. Clarke, M.R. Bate, J.E. Pringle, Mon. Not. R. Astron. Soc. 324, 573 (2001)

    ADS  Google Scholar 

  • A.P. Boss, Astrophys. J. 503, 923 (1998)

    ADS  Google Scholar 

  • C. Brocksopp, R.P. Fender, V. Larionov, V.M. Lyuty, A.E. Tarasov, G.G. Pooley, W.S. Paciesas, P. Roche, Mon. Not. R. Astron. Soc. 309, 1063 (1999)

    ADS  Google Scholar 

  • C. Chan, D. Psaltis, F. Özel, Astrophys. J. 645, 506 (2006)

    ADS  Google Scholar 

  • W.-X. Chen, A.M. Beloborodov, Astrophys. J. 657, 383 (2007)

    ADS  Google Scholar 

  • X. Chen, Mon. Not. R. Astron. Soc. 275, 641 (1995)

    ADS  Google Scholar 

  • X. Chen, M. Abramowicz, J.-P. Lasota, R. Narayan, I. Yi, Astrophys. J. 443, L61 (1995)

    ADS  Google Scholar 

  • X. Chen, M. Abramowicz, J.-P. Lasota, Astrophys. J. 476, 61 (1997)

    ADS  Google Scholar 

  • H.S. Cohl, J.E. Tohline, Astrophys. J. 527, 86 (1999)

    ADS  Google Scholar 

  • M. de Val-Borro, M. Karovska, D. Sasselov, Astrophys. J. 700, 1148 (2009)

    ADS  Google Scholar 

  • T. di Matteo, A.C. Fabian, Mon. Not. R. Astron. Soc. 286, 393 (1997)

    ADS  Google Scholar 

  • T. di Matteo, R. Perna, R. Narayan, Astrophys. J. 579, 706 (2002)

    ADS  Google Scholar 

  • W. Duschl, P.A. Strittmatter, P.L. Biermann, Astron. Astrophys. 357, 1123 (2000)

    ADS  Google Scholar 

  • R. Edgar, New Astron. Rev. 48, 843 (2004)

    ADS  Google Scholar 

  • D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

    ADS  Google Scholar 

  • A.A. Esin, J.E. McClintock, R. Narayan, Astrophys. J. 489, 865 (1997)

    ADS  Google Scholar 

  • A.A. Esin, R. Narayan, W. Cui, J.E. Grove, S.-N. Zhang, Astrophys. J. 505, 854 (1998)

    ADS  Google Scholar 

  • A.A. Esin, J.E. McClintock, J.J. Drake, M.R. Garcia, C.A. Haswell, R.I. Hynes, M.P. Muno, Astrophys. J. 555, 483 (2001)

    ADS  Google Scholar 

  • N.W. Evans, P.T. de Zeeuw, Mon. Not. R. Astron. Soc. 257, 152 (1992)

    ADS  Google Scholar 

  • A.C. Fabian, M.J. Rees, Mon. Not. R. Astron. Soc. 277, L5 (1995)

    ADS  Google Scholar 

  • T. Foglizzo, M. Ruffert, Astron. Astrophys. 320, 342 (1997)

    ADS  Google Scholar 

  • T. Foglizzo, M. Ruffert, Astron. Astrophys. 347, 901 (1999)

    ADS  Google Scholar 

  • T. Foglizzo, P. Galletti, M. Ruffert, Astron. Astrophys. 435, 397 (2005)

    ADS  Google Scholar 

  • J.A. Font, J.M. Ibáñez, Astrophys. J. 494, 297 (1998a)

    ADS  Google Scholar 

  • J.A. Font, J.M. Ibáñez, Mon. Not. R. Astron. Soc. 298, 835 (1998b)

    ADS  Google Scholar 

  • J.A. Font, J.M. Ibáñez, P. Papadopoulos, Mon. Not. R. Astron. Soc. 305, 920 (1999)

    ADS  Google Scholar 

  • P.C. Fragile, D.L. Meier, Astrophys. J. 693, 771 (2009)

    ADS  Google Scholar 

  • J. Frank, A. King, D. Raine, Accretion Power in Astrophysics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  • V. Frolov, I. Novikov, Black Hole Physics: Basic Concepts and New Developments (Springer, Berlin, 1998)

    MATH  Google Scholar 

  • B.A. Fryxell, R.E. Taam, Astrophys. J. 335, 862 (1988)

    ADS  Google Scholar 

  • C.F. Gammie, Astrophys. J. 553, 174 (2001)

    ADS  Google Scholar 

  • G. Ghisellini, in Jets at All Scales, ed. by G.E. Romero, R.A. Sunyaev, T. Belloni. Proceedings of the IAU Symposium, vol. 275 (2011), p. 335

    Google Scholar 

  • P. Goldreich, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 125 (1965)

    ADS  Google Scholar 

  • J. Goodman, Mon. Not. R. Astron. Soc. 339, 937 (2003)

    ADS  Google Scholar 

  • L.J. Greenhill, C.R. Gwinn, Astrophys. Space Sci. 248, 261 (1997)

    ADS  Google Scholar 

  • A.A. Gvozdev, I.S. Ognev, JETP Lett. 74, 298 (2001)

    ADS  Google Scholar 

  • F. Hoyle, R.A. Lyttleton, Proc. Camb. Philos. Soc. 35, 405 (1939)

    ADS  Google Scholar 

  • J.-M. Huré, Astron. Astrophys. 434, 1 (2004)

    ADS  Google Scholar 

  • J.-M. Huré, A. Dieckmann, Astron. Astrophys. 541, A130 (2012)

    ADS  Google Scholar 

  • J.-M. Huré, A. Pierens, Astrophys. J. 624, 289 (2005)

    ADS  Google Scholar 

  • J.-M. Huré, D. Pelat, A. Pierens, Astron. Astrophys. 475, 401 (2007)

    ADS  MATH  Google Scholar 

  • J.-M. Huré, F. Hersant, C. Surville, N. Nakai, T. Jacq, Astron. Astrophys. 530, A145 (2011)

    ADS  Google Scholar 

  • S. Ichimaru, Astrophys. J. 214, 840 (1977)

    ADS  Google Scholar 

  • I.V. Igumenshchev, Astrophys. J. 577, L31 (2002)

    ADS  Google Scholar 

  • I.V. Igumenshchev, M.A. Abramowicz, Mon. Not. R. Astron. Soc. 303, 309 (1999)

    ADS  Google Scholar 

  • I.V. Igumenshchev, M.A. Abramowicz, Astrophys. J. Suppl. Ser. 130, 463 (2000)

    ADS  Google Scholar 

  • I.V. Igumenshchev, M.A. Abramowicz, R. Narayan, Astrophys. J. 537, L27 (2000)

    ADS  Google Scholar 

  • V. Karas, J.-M. Huré, O. Semerák, Class. Quantum Gravity 21, R1 (2004)

    ADS  MATH  Google Scholar 

  • K. Kohri, S. Mineshige, Astrophys. J. 577, 311 (2002)

    ADS  Google Scholar 

  • K. Kohri, R. Narayan, T. Piran, Astrophys. J. 629, 341 (2005)

    ADS  Google Scholar 

  • A.S. Kompaneets, Sov. Phys. JETP 4, 730 (1957)

    MathSciNet  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd English edn. (Pergamon, New York, 1987)

    MATH  Google Scholar 

  • J.P. Lasota, M.A. Abramowicz, X. Chen, J. Krolik, R. Narayan, I. Yi, Astrophys. J. 461, 142 (1996)

    ADS  Google Scholar 

  • W.H. Lee, E. Ramirez-Ruiz, D. Page, Astrophys. J. 632, 421 (2005)

    ADS  Google Scholar 

  • A. Levinson, Astrophys. J. 648, 510 (2006)

    ADS  Google Scholar 

  • D.N.C. Lin, J.E. Pringle, Mon. Not. R. Astron. Soc. 225, 607 (1987)

    ADS  Google Scholar 

  • G. Lodato, G. Bertin, Astron. Astrophys. 398, 517 (2003a)

    ADS  Google Scholar 

  • G. Lodato, G. Bertin, Astron. Astrophys. 408, 1015 (2003b)

    ADS  Google Scholar 

  • D. Lynden-Bell, A.J. Kalnajs, Mon. Not. R. Astron. Soc. 157, 1 (1972)

    ADS  Google Scholar 

  • R. Mahadevan, R. Narayan, J. Krolik, Astrophys. J. 486, 268 (1977)

    ADS  Google Scholar 

  • K. Mamyoda, N. Nakai, A. Yamauchi, P. Diamond, J.-M. Hureé, Publ. Astron. Soc. Jpn. 61, 1143 (2009)

    ADS  Google Scholar 

  • T. Matsuda, M. Inoue, K. Sawada, Mon. Not. R. Astron. Soc. 226, 785 (1987)

    ADS  Google Scholar 

  • M.L. McConnell, J.M. Ryan, W. Collmar, V. Schönfelder, H. Steinle, A.W. Strong, H. Bloemen, W. Hermsen, L. Kuiper, K. Bennett, B.F. Phlips, C. Ling, Astrophys. J. 543, 928 (2000)

    ADS  Google Scholar 

  • D.L. Meier, Astrophys. Space Sci. 300, 55 (2005)

    ADS  Google Scholar 

  • P. Mészáros, Annu. Rev. Astron. Astrophys. 40, 137 (2002)

    Google Scholar 

  • B.D. Metzger, A.L. Piro, E. Quataert, Mon. Not. R. Astron. Soc. 390, 781 (2008)

    ADS  Google Scholar 

  • E. Müller, M. Steinmetz, Comput. Phys. Commun. 89, 45 (1995)

    ADS  MATH  Google Scholar 

  • R. Narayan, Astrophys. J. 462, 136 (1996)

    ADS  Google Scholar 

  • R. Narayan, I. Yi, Astrophys. J. 490, 605 (1994)

    Google Scholar 

  • R. Narayan, I. Yi, Astrophys. J. 444, 231 (1995a)

    ADS  Google Scholar 

  • R. Narayan, I. Yi, Astrophys. J. 445, 710 (1995b)

    ADS  Google Scholar 

  • R. Narayan, I. Yi, R. Mahadevan, Nature 374, 623 (1995)

    ADS  Google Scholar 

  • R. Narayan, J.E. McClintock, I. Yi, Astrophys. J. 457, 821 (1996)

    ADS  Google Scholar 

  • R. Narayan, S. Kato, F. Honma, Astrophys. J. 476, 49 (1997a)

    ADS  Google Scholar 

  • R. Narayan, D. Barret, J.E. McClintock, Astrophys. J. 482, 448 (1997b)

    ADS  Google Scholar 

  • R. Narayan, R. Mahadevan, J.E. Grindlay, R.G. Popham, C. Gammie, Astrophys. J. 492, 554 (1998a)

    ADS  Google Scholar 

  • R. Narayan, R. Mahadevan, E. Quataert, in Theory of Black Hole Accretion Disks, ed. by M.A. Abramowicz, G. Bjornsson, J.E. Pringle (Cambridge University Press, Cambridge, 1998b), p. 148

    Google Scholar 

  • R. Narayan, I.V. Igumenshchev, M.A. Abramowicz, Astrophys. J. 529, 798 (2000)

    ADS  Google Scholar 

  • R. Narayan, T. Piran, P. Kumar, Astrophys. J. 557, 949 (2001)

    ADS  Google Scholar 

  • R. Narayan, E. Quataert, I.V. Igumenshchev, M.A. Abramowicz, Astrophys. J. 577, 295 (2002)

    ADS  Google Scholar 

  • I.D. Novikov, K.S. Thorne, in Black Holes, ed. by C. DeWitt, B. DeWitt (Gordon and Breach, Paris, 1973), p. 343

    Google Scholar 

  • A.T. Okazaki, G.E. Romero, S.P. Owocki, PoS(Integral08) 074 (2008)

    Google Scholar 

  • J.A. Orosz, J.E. McClintock, J.P. Aufdenberg, R.A. Remillard, M.J. Reid, R. Narayan, G. Lijun, Astrophys. J. 742, 084 (2011)

    ADS  Google Scholar 

  • B. Paczyński, Acta Astron. 28, 91 (1978a)

    ADS  Google Scholar 

  • B. Paczyński, Acta Astron. 28, 241 (1978b)

    ADS  Google Scholar 

  • P. Padoan, A. Kritsuk, M.L. Norman, A. Nordlund, Astrophys. J. 622, L61 (2005)

    ADS  Google Scholar 

  • D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)

    ADS  Google Scholar 

  • A.J. Penner, Mon. Not. R. Astron. Soc. 414, 1467 (2011)

    ADS  Google Scholar 

  • L.I. Petrich, S.L. Shapiro, R.F. Stark, S.A. Teukolsky, Astrophys. J. 336, 313 (1989)

    ADS  Google Scholar 

  • T. Piran, ASP Conf. Ser. 308, 355 (2003)

    ADS  Google Scholar 

  • T. Piran, Rev. Mod. Phys. 76, 1143 (2004)

    ADS  Google Scholar 

  • R. Popham, R. Narayan, Astrophys. J. 442, 337 (1995)

    ADS  Google Scholar 

  • R. Popham, S.E. Woosley, C. Fryer, Astrophys. J. 518, 356 (1999)

    ADS  Google Scholar 

  • J. Poutanen, in Theory of Black Hole Accretion Disks, ed. by M.A. Abramowicz, G. Bjornsson, J.E. Pringle (Cambridge University Press, Cambridge, 1998), p. 100

    Google Scholar 

  • J.E. Pringle, Mon. Not. R. Astron. Soc. 177, 65 (1976)

    ADS  Google Scholar 

  • E. Quataert, A. Gruzinov, Astrophys. J. 539, 809 (2000)

    ADS  Google Scholar 

  • E. Quataert, T. di Matteo, R. Narayan, L.C. Ho, Astrophys. J. 525, L89 (1999)

    ADS  Google Scholar 

  • C.S. Reynolds, T. Di Matteo, A.C. Fabian, U. Hwang, C.R. Canizares, Mon. Not. R. Astron. Soc. 283, L111 (1996)

    ADS  Google Scholar 

  • M.M. Reynoso, G.E. Romero, O.A. Sampayo, Astron. Astrophys. 454, 11 (2006)

    ADS  Google Scholar 

  • W.K.M. Rice, D.H. Forgan, P.J. Armitage, Mon. Not. R. Astron. Soc. 420, 1640 (2012)

    ADS  Google Scholar 

  • H. Riffert, H. Herold, Astrophys. J. 450, 508 (1995)

    ADS  Google Scholar 

  • G.E. Romero, F.L. Vieyro, G.S. Vila, Astron. Astrophys. 519, A109 (2010)

    ADS  Google Scholar 

  • M. Ruffert, Astron. Astrophys. Suppl. Ser. 106, 505 (1994)

    ADS  Google Scholar 

  • M. Ruffert, Astron. Astrophys. Suppl. Ser. 113, 133 (1995)

    ADS  Google Scholar 

  • M. Ruffert, Astron. Astrophys. 311, 817 (1996)

    ADS  Google Scholar 

  • M. Ruffert, D. Arnet, Astrophys. J. 427, 351 (1994)

    ADS  Google Scholar 

  • M. Ruffert, H.-T. Janka, Astron. Astrophys. 344, 573 (1999)

    ADS  Google Scholar 

  • G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (Wiley, New York, 1979)

    Google Scholar 

  • I. Sakelliou, Mon. Not. R. Astron. Soc. 318, 1164 (2000)

    ADS  Google Scholar 

  • M.M. Schulreich, D. Breitschwerdt, Astron. Astrophys. 531, A13 (2011)

    ADS  Google Scholar 

  • E. Schulz, Astrophys. J. 693, 1310 (2009)

    ADS  Google Scholar 

  • E. Schulz, Astrophys. J. 747, 106 (2012)

    ADS  Google Scholar 

  • N.I. Shakura, Astron. Ž. 49, 921 (1972)

    ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 337 (1973)

    ADS  Google Scholar 

  • S.L. Shapiro, A.P. Lightman, Astrophys. J. 204, 555 (1976)

    ADS  Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Google Scholar 

  • S.L. Shapiro, A.P. Lightman, D.M. Eardly, Astrophys. J. 204, 187 (1976)

    ADS  Google Scholar 

  • E. Shima, T. Matsuda, H. Takeda, K. Sawada, Mon. Not. R. Astron. Soc. 217, 367 (1985)

    ADS  Google Scholar 

  • E. Shima, T. Matsuda, U. Anzer, G. Börner, H.M.J. Boffin, Astron. Astrophys. 337, 311 (1998)

    ADS  Google Scholar 

  • I. Shlosman, S. Begelman, Astrophys. J. 341, 685 (1989)

    ADS  Google Scholar 

  • N. Soker, Mon. Not. R. Astron. Soc. 350, 1366 (2004)

    ADS  Google Scholar 

  • S. Stepney, P.W. Guilbert, Mon. Not. R. Astron. Soc. 204, 1269 (1983)

    ADS  Google Scholar 

  • I.R. Stevens, D.M. Acreman, T.J. Ponman, Mon. Not. R. Astron. Soc. 310, 663 (1999)

    ADS  Google Scholar 

  • J.M. Stone, J.E. Pringle, M.C. Begelman, Mon. Not. R. Astron. Soc. 310, 1002 (1999)

    ADS  Google Scholar 

  • H. Störzer, Astron. Astrophys. 271, 25 (1993)

    ADS  Google Scholar 

  • R.E. Taam, E.L. Sandquist, Annu. Rev. Astron. Astrophys. 38, 113 (2000)

    ADS  Google Scholar 

  • T. Theuns, H.M.J. Boffin, A. Jorisses, Mon. Not. R. Astron. Soc. 280, 1264 (1996)

    ADS  Google Scholar 

  • A. Toomre, Astrophys. J. 139, 1217 (1964)

    ADS  Google Scholar 

  • A. Trova, J.-M. Huré, F. Hersant, Mon. Not. R. Astron. Soc. 424, 2635 (2012)

    ADS  Google Scholar 

  • F.L. Vieyro, G.E. Romero, Astron. Astrophys. 542, A7 (2012)

    ADS  Google Scholar 

  • Q. Wu, F. Yuan, X. Cao, Astrophys. J. 669, 96 (2007)

    ADS  Google Scholar 

  • F. Yuang, ASP Conf. Ser. 373, 95 (2007)

    ADS  Google Scholar 

  • F. Yuan, S. Markoff, H. Falcke, Astron. Astrophys. 383, 854 (2002)

    ADS  Google Scholar 

  • F. Yuan, E. Quataert, R. Narayan, Astrophys. J. 598, 301 (2003)

    ADS  Google Scholar 

  • F. Yuan, E. Quataert, R. Narayan, Astrophys. J. 606, 984 (2004)

    ADS  Google Scholar 

  • F. Yuan, R. Ma, R. Narayan, Astrophys. J. 679, 984 (2008)

    ADS  Google Scholar 

  • I. Zalamea, A.M. Beloborodov, Mon. Not. R. Astron. Soc. 410, 2302 (2011)

    ADS  Google Scholar 

  • O. Zanotti, C. Roedig, L. Rezolla, L. Del Zanna, Mon. Not. R. Astron. Soc. 417, 2899 (2011)

    ADS  Google Scholar 

  • D. Zhang, Z.G. Dai, Astrophys. J. 703, 461 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, G.E., Vila, G.S. (2014). Accretion onto Black Holes. In: Introduction to Black Hole Astrophysics. Lecture Notes in Physics, vol 876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39596-3_4

Download citation

Publish with us

Policies and ethics