Skip to main content

Fabrication Using Dressed Photons

  • Chapter
  • First Online:
Book cover Dressed Photons

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

This chapter reviews novel nano-fabrication methods that have been made possible based on the principles described in Chap. 4. These methods use a novel excitation process that originates from the phonons in the dressed-photon–phonons (DPPs), called a phonon-assisted process.

Longum iter est per praecepta, breve et efficax per exempla. Lucius Annaeus Seneca, Epistulae, VI, 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value of the electronic polarization component \({p^{el}}\) is larger than that of the vibrational component \({p^{vib}}\) in the case where the electron is in a macroscopic material or in vacuum and can move freely. However, in the present case, one has to consider the response of the electron to the DPP, whose spatial extent is smaller than the coherence length of the electron. That is, if the volumes of the spaces in which the electron and nucleus are confined are equal to each other, the value of the polarization induced by the DPP depends on the state density of the electron or nucleus. Furthermore, the state densities of the confined electron and nucleus depend on their effective masses. Here, the electron mass in vacuum is \(1\times 10^{-3}\) times the nuclear mass, and the effective mass of the electron in semiconductors and dielectrics is 1/10 times the mass of the electron at rest. Therefore, the mass ratio of the electron and nucleus can be estimated to be \(1\times 10^{-4}\), and as a result, the ratio \({p^{el}}/{p^{vib}}\) of the polarizations is thus \(1\times 10^{-4}\).

  2. 2.

    The value 0.1 eV was used in the text, based on the estimated value of 0.1–0.2 eV from the absorption spectroscopy of gaseous DEZn molecules [2].

  3. 3.

    Class \(X\) represents the level of the cleanness. In Japan, it is classified according to JIS9920. If the number of dust particles having a diameter smaller than 0.1 \(\upmu \)m is less than \(X\) in a 1 m\(^3\) volume, the level of cleanness is called class \(X\). Values of \(X\) are always powers of 10.

References

  1. T. Kawazoe, Y. Yamamoto, M. Ohtsu, Appl. Phys. Lett. 79, 1184 (2004)

    Article  ADS  Google Scholar 

  2. T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122, 024715 (2005)

    Article  ADS  Google Scholar 

  3. T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. B 84, 247 (2006)

    Article  ADS  Google Scholar 

  4. V. Polonski, Y. Yamamoto, M. Kourogi, H. Fukuda, M. Ohtsu, J. Microscopy 194, 545 (1999)

    Article  Google Scholar 

  5. Y. Yamamoto, M. Kourogi, M. Ohtsu, G.H. Lee, T. Kawazoe, IEICE Trans. Electron. E85-C, 2081 (2002)

    Google Scholar 

  6. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 81, 3651 (2002)

    Article  ADS  Google Scholar 

  7. T. Yatsui, K. Nakanishi, K. Kitamura, M. Ohtsu, Appl. Phys. B 107, 673 (2012)

    Article  Google Scholar 

  8. S. Yamazaki, T. Yatsui, M. Ohtsu, T.W. Kim, H. Fujioka, Appl. Phys. Lett. 85, 3059 (2004)

    Article  ADS  Google Scholar 

  9. H. Yonemitsu, T. Kawazoe, K. Kobayashi, M. Ohtsu, J. Photoluminescence 122–123, 230 (2007)

    Article  Google Scholar 

  10. T. Kawazoe, M. Ohtsu, in Nanophotonics and Nanofabrication, ed. by M. Ohtsu, Nanofabrication Principles, Practice (Wiley-VCH, Weinheim, 2009), pp. 17–34

    Google Scholar 

  11. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)

    Article  ADS  Google Scholar 

  12. T. Kawazoe, T. Takahashi, M. Ohtsu, Appl. Phys. B 98, 5 (2010)

    Article  ADS  Google Scholar 

  13. M. Koike, S. Miyauchi, K. Sano, T. Imazono, in Nanophotonics and Nanofabrication, ed. by M. Ohtsu, X-ray Devices and the Possibility of Applying Nanophotonics (Wiley-VCH, Weinheim, 2009), pp. 179–192

    Google Scholar 

  14. Y. Inao, S. Nakasato, R. Kuroda, M. Ohtsu, Microelectron. Eng. 84, 705 (2007)

    Article  Google Scholar 

  15. R. Kuroda, Y. Inao, S. Nakazato, T. Ito, T. Yamaguchi, T. Yamada, A. Terao, N. Mizutani, in Nanophotonics and Nanofabrication, ed. by M. Ohtsu, Lithography by Nanophotonics (Wiley-VCH, Weinheim, 2009), pp. 131–146

    Google Scholar 

  16. The Energy Conservation Center (ed.), Handbook of Energy Conservation 2010 (The Energy Conservation Center, Tokyo, 2010), pp. 150–351

    Google Scholar 

  17. L.M. Cook, J. Non-Cryst, Solids 120, 152 (1990)

    Google Scholar 

  18. V.K. Jain, Mach. Sci. Technol. 12, 257 (2008)

    Article  Google Scholar 

  19. B. Wua, A. Kumar, J. Vac. Sci. Technol. B 25, 1743 (2007)

    Article  Google Scholar 

  20. T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008)

    Article  ADS  Google Scholar 

  21. T. Izawa, N. Inagaki, Proc. IEEE 68, 1184 (1980)

    Article  Google Scholar 

  22. T. Yatsui, K. Hirata, Y. Tabata, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Nanotechnology 21, 355303 (2010)

    Article  ADS  Google Scholar 

  23. M. Naruse, T. Yatsui, W. Nomura, K. Hirata, Y. Tabata, M. Ohtsu, J. Appl. Phys. 105, 063516 (2009)

    Article  ADS  Google Scholar 

  24. K. Hirata, Proc. SPIE 7921, 79210M (2011)

    Article  ADS  Google Scholar 

  25. W. Nomura, T. Kawazoe, T. Yatsui, M. Naruse, N. Tabata, K. Hirata, M. Haraguchi, M. Ohtsu, Extended Abstracts (The 58th Spring Meeting, 2011) (The Jpn. Soc. Appl. Phys., Tokyo, 2011) paper number 24p-KF-10

    Google Scholar 

  26. T. Yatsui, Nanophotonic Fabrication (Springer, Berlin, 2012), p. 79

    Google Scholar 

  27. T. Yatsui, K. Hirata, Y. Tabata, Y. Miyake, Y. Akita, M. Yoshimoto, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 103, 527 (2011)

    Article  ADS  Google Scholar 

  28. W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Extended Abstracts (The 59th Spring Meeting, 2012) (The Jpn. Soc. Appl. Phys., Tokyo, 2012) paper number 17p–B11-14

    Google Scholar 

  29. R. Teki, A. John Kadaksham, M. House, J. Harris-Jones, A. Ma, S.V. Babu, A. Hariprasad, P. Dumas, R. Jenkins, J. Provine, A. Richmann, J. Stowers, S. Meyers, U. Dietze, T. Kusumoto, T. Yatsui, M. Ohtsu, Proc. SPIE 8322, 83220B (2012)

    Article  Google Scholar 

  30. M. Naruse, T. Yatsui, W. Nomura, T. Kawazoe, M. Aida, M. Ohtsu, Appl. Phys. Lett. 102, 071603 (2013)

    Article  ADS  Google Scholar 

  31. T. Yatsui, W. Nomura, M. Naruse, M. Ohtsu, J. Phys. D 45, 475302 (2012)

    Article  ADS  Google Scholar 

  32. T. Morimoto, K. Hirata, N. Tabata, W. Nomura, T. Kawazoe, T. Yatsui, M. Ohtsu, Extended Abstracts (The 59th Spring Meeting, 2012) (The Jpn. Soc. Appl. Phys., Tokyo, 2012) paper number 17p–B11-13

    Google Scholar 

  33. W. Nomura, T. Yatsui, Y. Yanase, K. Suzuki, M. Fujita, A. Kamata, M. Naruse, M. Ohtsu, Appl. Phys. B 99, 75 (2010)

    Article  ADS  Google Scholar 

  34. A. Ikesue, I. Furusato, J. Am. Ceram. Soc. 78, 225 (1995)

    Article  Google Scholar 

  35. J. Lu, J. Son, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Ynagitani, A. Kudryashov, Jpn. J. Appl. Phys. 39, L1048 (2000)

    Article  ADS  Google Scholar 

  36. N. Tanaka, Bull. Ceram. Soc. Jpn. 38, 967 (2003)

    Google Scholar 

  37. A. Krell, P. Blank, H. Ma, T. Hutzler, J. Am. Ceram. Soc. 86, 12 (2003)

    Article  Google Scholar 

  38. N. Pavel, M. Tsunekane, T. Taira, Opt. Express 19, 9378 (2011)

    Article  ADS  Google Scholar 

  39. D. Graham-Rowe, Nat. Photon. 2, 515 (2008)

    Article  ADS  Google Scholar 

  40. F.J. Himpsel, J.E. Ortega, G.J. Mankey, R.F. Willis, Adv. Phys. 47, 511 (1998)

    Article  Google Scholar 

  41. E.J. Menke, Q. Li, R.M. Penner, Nano Lett. 4, 2009 (2004)

    Article  ADS  Google Scholar 

  42. F. Benabid, M. Notcutt, V. Loriette, L. Ju, D.G. Blair, J. Phys. D 33, 589 (2000)

    Article  ADS  Google Scholar 

  43. R.O. Duda, P.E. Hart, Commun. ACM 15, 11 (1972)

    Article  Google Scholar 

  44. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22, 215605 (2011)

    Article  ADS  Google Scholar 

  45. F. Morigaki, T. Yatsui, T. Kawazoe, T. Torimoto, M. Ohtsu, Extended Abstracts (The 59th Spring Meeting, 2012) (The Jpn. Soc. Appl. Phys., Tokyo, 2012) paper number 17p–B11-10

    Google Scholar 

  46. T. Yatsui, S. Yamazaki, K. Ito, H. Kawamura, M. Mizumura, T. Kawazoe, M. Ohtsu, Appl. Phys. B 92, 375 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichi Ohtsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsu, M. (2014). Fabrication Using Dressed Photons. In: Dressed Photons. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39569-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39569-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39568-0

  • Online ISBN: 978-3-642-39569-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics