Skip to main content

Devices Using Dressed Photons

  • Chapter
  • First Online:
Book cover Dressed Photons

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

This chapter reviews novel dressed-photon (DP) devices based on the operating principles described in Chap. 3 [1].

Natura semina nobis scientiae dedit, scientiam non dedit. Lucius Annaeus Seneca,Epistulaea, CXX, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Curves for the intensities of rising and falling signals are approximated by exponential functions \(\exp \left( {t/{\tau _r}} \right) \) and \(\exp \left( { - t/{\tau _f}} \right) \), respectively. Their time constants \({\tau _r}\) and \({\tau _f}\) are defined as the rise and fall times, respectively.

  2. 2.

    If all of the logical functions expressing the relations between \(M\) inputs and \(N\) outputs \(\left( {M,N = 1,2,3,\ldots } \right) \) can be given by the combination of a few basic logical functions, the set of these basic logical functions is called a complete set. All digital operations become possible with a complete set.

  3. 3.

    When the value of the cross-correlation coefficient is smaller than unity at zero time difference between the detections, the quantum state of the photon is called an anti-bunching state.

  4. 4.

    The magnitude of the transferred energy was evaluated by measuring the photocurrent from a photodiode on which these QDs were dispersed [38]. As can be understood from Fig. 5.34a, this optical-to-electrical energy conversion corresponds to the optical frequency down-conversion because the photon energy emitted from the lower energy level\(L_l\) in QD\(_\mathrm{L}\) is lower than that of the incident light, which is resonant with the energy level\(S\) in QDs. In the case of the presently used CdSe QDs, it corresponds to conversion from ultraviolet light to visible light. Thus, as an example, dispersing these QDs on the surface of a solar cell is expected to increase its optical-to-electrical energy conversion efficiency, and additionally, the surface of the solar cell can be protected from ultraviolet radiation exposure [38].

References

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse, Prinicples of Nanophotonics (CRC Press, Bica Raton, 2007), pp. 29–108

    Google Scholar 

  2. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)

    Article  ADS  Google Scholar 

  3. S. Sangu, K. Kobayashi, T. Kawazoe, A. Shojiguchi, M. Ohtsu, Trans. Materials Res. Soc. Jpn. 28, 1035 (2003)

    Google Scholar 

  4. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S.J. An, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007)

    Article  ADS  Google Scholar 

  5. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)

    Article  ADS  Google Scholar 

  6. R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, D. Bimberg, Phys. Rev. B 62, 16881 (2000)

    Article  ADS  Google Scholar 

  7. T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, M. Naruse, Appl. Phys. B 103, 537 (2011)

    Article  ADS  Google Scholar 

  8. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.E. Pistol, L. Samuelson, G. Bjork, Appl. Phys. 78, 2476 (2001)

    ADS  Google Scholar 

  9. Y. Francis, J. Suganda, Y. Shizuhuo (ed.), Introduction to Information Optics (Academic Press, San Diego, 2001), p. 202

    Google Scholar 

  10. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B 110, 39 (2013)

    Article  ADS  Google Scholar 

  11. T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005)

    Article  ADS  Google Scholar 

  12. K. Akahane, N. Yamamoto, M. Naruse, T. Kawazoe, T. Yatsui, M. Ohtsu, Jpn. J. Appl. Phys. 50, 04DH05 (2011)

    Google Scholar 

  13. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Opt. Lett. 30(2), 201–203 (2005)

    Article  ADS  Google Scholar 

  14. W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophotonics 1, 011591 (2007)

    Article  Google Scholar 

  15. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 100, 181 (2010)

    Article  ADS  Google Scholar 

  16. P. Guynot-Sionnest, M. Shim, C. Matranga, M. Hines, Phys. Rev. B 60, R2181 (1999)

    Article  ADS  Google Scholar 

  17. W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, Appl. Phys. B 107, 257 (2012)

    Article  ADS  Google Scholar 

  18. Y. Liu, T. Morishima, T. Yatsui, T. Yonezawa, M. Washizu, H. Fujita, M. Ohtsu, Extended Abstracts (The Annual Meeting, 2009) (Soc. Instrument and Control Eng., Tokyo, 2009) paper number 3B5-7

    Google Scholar 

  19. T. Yatsui, S. Sangu, K. Kobayashi, T. Kawazoe, M. Ohtsu, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 94, 083113 (2009)

    Article  ADS  Google Scholar 

  20. M. Ohtsu, in Progress in Nanophotonics I, ed. by M. Ohtsu, Nanophotonics: Dressed Photon Technology for Qualitatively Innovative Optical Devices, Fabrication, and Systems, (Springer, Berlin, 2011), pp. 15–18

    Google Scholar 

  21. M. Ohtsu, Highly Coherent Semiconductor Lasers (Artech House, Boston, 1992), pp. 40–43

    Google Scholar 

  22. M. Naruse, H. Hori, K. Kobayashi, T. Kawazoe, M. Ohtsu, Appl. Phys. B 102, 717 (2011)

    Article  ADS  Google Scholar 

  23. T. Franzl, T.A. Klar, S. Schietinger, A.L. Rogach, J. Feldman, Nano Lett. 4, 1599 (2004)

    Article  ADS  Google Scholar 

  24. H.J. Carmichael, Statistical Methods in Quantum Optics I (Springer, Berlin, 1999)

    Book  Google Scholar 

  25. T. Yatsui, H. Jeong, M. Ohtsu, Appl. Phys. B 93, 199 (2008)

    Article  ADS  Google Scholar 

  26. S. Sangu, K. Kobayashi, M. Ohtsu, IEICE Trans. Electron. E88-C, 1824 (2005)

    Google Scholar 

  27. S. Sangu, K. Kobayashi, in Handbook of Nanophysics, ed. by K.D. Sattler, Operation in Nanophotonics (CRC Press, Boca Raton, 2010), pp. 33/11–33/12

    Google Scholar 

  28. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  29. M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  30. A. Shojiguchi, K. Kobayashi, S. Sangu, K. Kitahara, M. Ohtsu, J. Phys. Soc. Jpn. 72, 2984 (2003)

    Article  ADS  MATH  Google Scholar 

  31. T. Yatsui, A. Ishikawa, K. Kobayashi, A. Shojiguchi, S. Sangu, T. Kawazoe, M. Ohtsu, J. Yoo, G.-C. Yi, App. Phy. Lett. 100, 233118 (2012)

    Article  ADS  Google Scholar 

  32. R. Hambury Brown, R.Q. Twiss, Nature 178, 1447 (1956)

    Article  ADS  Google Scholar 

  33. T. Kawazoe, S. Tanaka, M. Ohtsu, J. Nanophotonics 2, 029502 (2008)

    Article  Google Scholar 

  34. G.-L. Ingold, Y.V. Nazarov, in Single Charge Tunneling, ed. by H. Grabert, M.H. Devoret. Charge Tunneling Rates in Ultrasmall Junctions (Plenum Press, New York, 1992), pp. 21–107

    Google Scholar 

  35. M. Naruse, H. Hori, K. Kobayashi, P. Holmstrom, L. Thylen, M. Ohtsu, Opt. Express 18, A544 (2010)

    Article  Google Scholar 

  36. L.B. Kish, IEEE Proc. Circ. Dev. Syst. 151, 190 (2004)

    Article  Google Scholar 

  37. H. Imahori, J. Phys. Chem. B 108, 6130 (2004)

    Article  Google Scholar 

  38. M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, M. Ohtsu, Phys. Rev. B 80, 125325 (2009)

    Article  ADS  Google Scholar 

  39. N. Johnson, Simply Complexity (Oneworld Publications, Oxford, 2007)

    Google Scholar 

  40. M. Naruse, P. Holmstrom, T. Kawazoe, K. Akahane, N. Yamamoto, L. Thylen, M. Ohtsu, Appl. Phys. Lett. 100, 241102 (2012)

    Article  ADS  Google Scholar 

  41. Y. Yamamoto, Lecture Notes on Fundamentals of Noise Processes, online text, http://www.qis.ex.nii.ac.jp/qis/lecturenotes.html

  42. F. Moll, M. Roca, E. Isern, Microelectron. J. 34, 833 (2003)

    Article  Google Scholar 

  43. M. Ohtsu, Extended Abstracts (RLNR/Tokyo-Tech International Symposium on Nanoscience and Nanotechnology on Quantum Particles, 2003) (Tokyo Inst. Tech, Tokyo, 2003) paper number I-3

    Google Scholar 

  44. N. Streibl, K.-H. Brenner, A. Huang, J. Jahns, J.L. Jewell, A.W. Lohmann, D.A.B. Miller, M. Murdocca, M.E. Prise, T. Sizer, Proc. IEEE 77, 1954 (1989)

    Article  ADS  Google Scholar 

  45. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, B. Maggs, ACM SIGCOMM Comput. Commun. Rev. 39, 123 (2009)

    Article  Google Scholar 

  46. M. Naruse, H. Hori, K. Kobayashi, M. Ohtsu, Opt. Lett. 32, 1761 (2007)

    Article  ADS  Google Scholar 

  47. M. Naruse, F. Pepper, K. Akahane, N. Yamamoto, T. Kawazoe, N. Tate, M. Ohtsu, ACM J. Emerg. Technol. Comput. Syst. 8, 4-1 (2012)

    Google Scholar 

  48. S. Hauck, Proc. IEEE 83, 69 (1995)

    Article  Google Scholar 

  49. J. Lee, S. Adachi, F. Peper, S. Mashiko, J. Comput. Syst. Sci. 70, 201 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Naruse, K. Leibnitz, F. Peper, N. Tate, W. Nomura, T. Kawazoe, M. Murata, M. Ohtsu, Nano Commun. Netw. 2, 189 (2011)

    Google Scholar 

  51. S. Balasubramaniam, D. Botvich, J. Mineraud, W. Donnelly, N. Agoulmine, IEEE Netw. 24, 20 (2010)

    Article  Google Scholar 

  52. S. Balasubraianiam, K. Leipnitz, P. Lio, D. Botvich, M. Murata, IEEE Commun. Mag. 49, 44 (2011)

    Article  Google Scholar 

  53. S. Tumps, Comput. Netw. 52, 360 (2008)

    Article  Google Scholar 

  54. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, M. Ohtsu, Phys. Rev. B 86, 125407 (2012)

    Article  ADS  Google Scholar 

  55. M. Aono, S.-J. Kim, L. Zhu, M. Naruse, M. Ohtsu, H. Hori, M. Hara, in Proceedings of The 2012 International Symposium on Nonlinear Theory and Its Applications (The Inst. Electron, Info. and Commun. Eng., Tokyo, 2012) pp. 586–589

    Google Scholar 

  56. S.-J. Kim, M. Naruse, M. Aono, M. Ohtsu, M. Hara, Technical Digest of The 1st International Workshop on Information Physics and Computing in Nano-scale Photonics and Materials (The Opt. Soc. Jpn., Tokyo, 2012) paper number IPCN1-14

    Google Scholar 

  57. A. Olaya-Castro, C.F. Lee, F.F. Olsen, N.F. Johnson, Phys. Rev. B 78, 085115 (2008)

    Article  ADS  Google Scholar 

  58. H. Tamura, J.-M. Mallet, M. Oheim, I. Burghardt, J. Phys. Chem. C 113, 7458 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichi Ohtsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsu, M. (2014). Devices Using Dressed Photons. In: Dressed Photons. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39569-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39569-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39568-0

  • Online ISBN: 978-3-642-39569-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics