Advertisement

Quenching of ECL

  • Saima Parveen
  • Muhammad Sohail Aslam
  • Lianzhe Hu
  • Guobao Xu
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

ECL quenching may play an important role in designing new methodologies for sensitive detection of analytes. Quenching proposes prospective advantages in the framework of ECL and has acquired considerable attention and is inextricably associated with the selectivity of luminophore and co-reactant. It can be used in diverse fields in the detection of many analytes, DNA detection, and hybridization, etc. Processes, reactions, and equations involving quenching are discussed as well.

Keywords

Quenching Förster transfer Stern–Volmer equation Electron-transfer-quenching path Cathodic ECL Energy scavenging process 

References

  1. 1.
    Bard AJ (2004) Electrogenerated chemiluminescence. Taylor & Francis, LondonCrossRefGoogle Scholar
  2. 2.
    Kuhn H (1970) Classical aspects of energy transfer in molecular systems. J Chem Phy 53(1):101–108. doi: 10.1063/1.1673749 CrossRefGoogle Scholar
  3. 3.
    Chance RR, Prock A, Silbey R (1975) Comments on the classical theory of energy transfer. J Chem Phy 62(6):2245–2254. doi: 10.1063/1.430748 CrossRefGoogle Scholar
  4. 4.
    Chandross EA, Visco RE (1968) Preannihilation electrochemiluminescence and the heterogeneous electrochemical formation of excited states. J Phy Chem 72(1):378–379CrossRefGoogle Scholar
  5. 5.
    Greenway GM, Knight AW, Knight PJ (1995) Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2[prime or minute]-bipyridine)ruthenium(II). Analyst 120(10):2549–2552CrossRefGoogle Scholar
  6. 6.
    Zheng H, Zu Y (2005) Highly efficient quenching of coreactant electrogenerated chemiluminescence by phenolic compounds. J phy chem B 109(33):16047–16051. doi: 10.1021/jp052843o CrossRefGoogle Scholar
  7. 7.
    Zheng H, Zu Y (2005) Emission of tris(2,2′-bipyridine)ruthenium(II) by coreactant electrogenerated chemiluminescence: from O2-insensitive to highly O2-sensitive. J physl chem B 109(24):12049–12053. doi: 10.1021/jp050350d CrossRefGoogle Scholar
  8. 8.
    Pizzocaro C, Ml Bolte, Hoffman MZ (1992) Cr(bpy)3 3+ -sensitized photo-oxidation of phenol in aqueous solution. J Photochem Photobio A 68(1):115–119CrossRefGoogle Scholar
  9. 9.
    Brune SN, Bobbitt DR (1992) Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2′-bipyridyl)ruthenium(III) with amino acids. Anal Chem 64(2):166–170CrossRefGoogle Scholar
  10. 10.
    McCall J, Alexander C, Richter MM (1999) Quenching of electrogenerated chemiluminescence by phenols, hydroquinones, catechols, and benzoquinones. Anal Chem 71(13):2523–2527CrossRefGoogle Scholar
  11. 11.
    McCall J, Richter MM (2000) Phenol substituent effects on electrogenerated chemiluminescence quenching. Analyst 125(3):545–548CrossRefGoogle Scholar
  12. 12.
    Chi Y, Dong Y, Chen G (2007) Inhibited Ru(bpy)3 2+ electrochemiluminescence related to electrochemical oxidation activity of inhibitors. Anal Chem 79(12):4521–4528. doi: 10.1021/ac0702443 CrossRefGoogle Scholar
  13. 13.
    Qiu B, Xue L, Wu Y, Lin Z, Guo L, Chen G (2011) Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)3 2+) electrochemiluminescence and its application for sensitive determination of some inorganic oxidants. Talanta 85(1):339–344. doi: 10.1016/j.talanta.2011.03.063 CrossRefGoogle Scholar
  14. 14.
    Guo L, Xue L, Qiu B, Lin Z, Kim D, Chen G (2010) Mechanism study on inhibited Ru(bpy)3 2+ electrochemiluminescence between coreactants. Phys Chem Chem Phy 12(39):12826–12832. doi: 10.1039/c004277c CrossRefGoogle Scholar
  15. 15.
    Li X, Sun L, Ding T (2011) Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates. Biosens Bioelectron 26(8):3570–3576. doi: 10.1016/j.bios.2011.02.003 CrossRefGoogle Scholar
  16. 16.
    Yu X, Dai J, Yang L, Xiao D (2010) 1-Butyl-3-methylimidazolium based ionic liquid as solvent for determination of hydrophobic naphthol with the electrogenerated chemiluminescence of tris(2,2′-bipyridine) ruthenium(II). Analyst 135(3):630–635. doi: 10.1039/b916435a CrossRefGoogle Scholar
  17. 17.
    Qiu B, Jiang X, Guo L, Lin Z, Cai Z, Chen G (2011) A highly sensitive method for detection of protein based on inhibition of Ru(bpy)3 2+/TPrA electrochemiluminescent system. Electrochim Acta 56(20):6962–6965. doi: 10.1016/j.electacta.2011.06.016 CrossRefGoogle Scholar
  18. 18.
    Wu A-H, Sun JJ, Zheng RJ, Yang HH, Chen GN (2010) A reagentless DNA biosensor based on cathodic electrochemiluminescence at a C/C(x)O(1−x) electrode. Talanta 81(3):934–940. doi: 10.1016/j.talanta.2010.01.040 CrossRefGoogle Scholar
  19. 19.
    Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)3 2+-doped silica nanoparticle ECL by ferrocene. Chem Comm 46(41):7751–7753. doi: 10.1039/c0cc03225e CrossRefGoogle Scholar
  20. 20.
    Wang X, He P, Fang Y (2010) A solid-state electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon. J Lumin 130(8):1481–1484. doi: 10.1016/j.jlumin.2010.03.016 CrossRefGoogle Scholar
  21. 21.
    Wang X, Dong P, Yun W, Xu Y, He P, Fang Y (2010) Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon. Talanta 80(5):1643–1647. doi: 10.1016/j.talanta.2009.09.060 CrossRefGoogle Scholar
  22. 22.
    Liao Y, Yuan R, Chai Y, Mao L, Zhuo Y, Yuan Y, Bai L, Yuan S (2011) Electrochemiluminescence quenching via capture of ferrocene-labeled ligand-bound aptamer molecular beacon for ultrasensitive detection of thrombin. Sens Actuators B 158(1):393–399. doi: 10.1016/j.snb.2011.06.045 CrossRefGoogle Scholar
  23. 23.
    Xu Y, Dong P, Zhang X, He P, Fang Y (2011) Solid-state electrochemiluminescence protein biosensor with aptamer substitution strategy. Sci China-Chem 54(7):1109–1115. doi: 10.1007/s11426-011-4278-y CrossRefGoogle Scholar
  24. 24.
    Ye S, Li H, Cao W (2011) Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 26(5):2215–2220. doi: 10.1016/j.bios.2010.09.037 CrossRefGoogle Scholar
  25. 25.
    Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26(5):2645–2650. doi: 10.1016/j.bios.2010.11.028 CrossRefGoogle Scholar
  26. 26.
    Hindson CM, Hanson GR, Francis PS, Adcock JL, Barnett NW (2011) Any old radical won't do: an EPR study of the selective excitation and quenching mechanisms of Ru(bipy)3 2+ chemiluminescence and electrochemiluminescence. Chem Eur J 17(29):8018–8022. doi: 10.1002/chem.201100877 CrossRefGoogle Scholar
  27. 27.
    Li F, Cui H, Lin XQ (2002) Determination of adrenaline by using inhibited Ru(bpy)3 2+ electrochemiluminescence. Anal Chim Acta 471(2):187–194. doi: 10.1016/s0003-2670(02)00930-3 CrossRefGoogle Scholar
  28. 28.
    Guo Z, Gai P, Hao T, Duan J, Wang S (2011) Determination of malachite green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J Agr Food Chem 59(10):5257–5262. doi: 10.1021/jf2008502 CrossRefGoogle Scholar
  29. 29.
    Chen J, Miyake M, Chi Y, Nishiumi T, Aoki K (2007) Determination of nitric oxide by quenching electro-chemiluminescence of tris(2,2′-bipyridyl)ruthenium in flow injection analysis. Electroanalysis 19(2–3):181–184. doi: 10.1002/elan.200603689 CrossRefGoogle Scholar
  30. 30.
    Sun YG, Cui H, Li YH, Lin XQ (2000) Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53(3):661–666. doi: 10.1016/s0039-9140(00)00550-6 CrossRefGoogle Scholar
  31. 31.
    Guo Z, Gai P (2011) Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta 688(2):197–202. doi: 10.1016/j.aca.2010.12.043 CrossRefGoogle Scholar
  32. 32.
    Pang YQ, Cui H, Zheng HS, Wan GH, Liu LJ, Yu XF (2005) Flow injection analysis of tetracyclines using inhibited Ru(bPY)3 2+/tripropylamine electrochemiluminescence system. Luminescence 20(1):8–15. doi: 10.1002/bio.793 CrossRefGoogle Scholar
  33. 33.
    Hua L, Zhou J, Han H (2010) Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim Acta 55(3):1265–1271. doi: 10.1016/j.electacta.2009.10.038 CrossRefGoogle Scholar
  34. 34.
    Mei YL, Wang HS, Li YF, Pan ZY, Jia WL (2010) Electrochemiluminescence of CdTe/CdS quantum dots with tripropylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis 22(2):155–160. doi: 10.1002/elan.200904685 CrossRefGoogle Scholar
  35. 35.
    Shan Y, Xu J–J, Chen H-Y (2010) Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Chem Comm 46(28):5079–5081. doi: 10.1039/c0cc00837k CrossRefGoogle Scholar
  36. 36.
    Shan Y, Xu J–J, Chen H-Y (2011) Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3(7):2916–2923. doi: 10.1039/c1nr10175g CrossRefGoogle Scholar
  37. 37.
    Liu X, Cheng L, Lei J, Liu H, Ju H (2010) Formation of surface traps on quantum dots by bidentate chelation and their application in low-potential electrochemiluminescent biosensing. Chem Eur J 16(35):10764–10770. doi: 10.1002/chem.201001738 CrossRefGoogle Scholar
  38. 38.
    Dennany L, Gerlach M, O'Carroll S, Keyes TE, Forster RJ, Bertoncello P (2011) Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. J Mat Chem 21(36):13984–13990. doi: 10.1039/c1jm12183a CrossRefGoogle Scholar
  39. 39.
    Chu H–H, Yan J-L, Tu Y-F (2010) Study on a luminol-based electrochemiluminescent sensor for label-free DNA sensing. Sensors 10(10):9481–9492. doi: 10.3390/s101009481 CrossRefGoogle Scholar
  40. 40.
    Zhu LD, Li YX, Zhu GY (2002) Flow injection determination of dopamine based on inhibited electrochemiluminescence of luminol. Anal Lett 35(15):2527–2537. doi: 10.1081/al-120016542 CrossRefGoogle Scholar
  41. 41.
    Kang JZ, Yin XB, Yang XR, Wang EK (2005) Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. Electrophoresis 26(9):1732–1736. doi: 10.1002/elps.200410247 CrossRefGoogle Scholar
  42. 42.
    Zhao J, Chen M, Yu C, Tu Y (2011) Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine. Analyst 136(19):4070–4074. doi: 10.1039/c1an15458c CrossRefGoogle Scholar
  43. 43.
    Li F, Pang YQ, Lin XQ, Cui H (2003) Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes. Talanta 59(3):627–636. doi: 10.1016/s0039-9140(02)00576-3 CrossRefGoogle Scholar
  44. 44.
    Xue L, Guo L, Qiu B, Lin Z, Chen G (2009) Mechanism for inhibition of/DBAE electrochemiluminescence system by dopamine. Electrochem Commun 11(8):1579–1582CrossRefGoogle Scholar
  45. 45.
    Lin XQ, Li F, Pang YQ, Cui H (2004) Flow injection analysis of gallic acid with inhibited electrochemiluminescence detection. Anal Bioanal Chem 378(8):2028–2033. doi: 10.1007/s00216-004-2519-z CrossRefGoogle Scholar
  46. 46.
    Wang CY, Huang HJ (2003) Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)3 2+-tripropylamine system. Anal Chim Acta 498(1–2):61–68. doi: 10.1016/j.aca.2003.08.064 CrossRefGoogle Scholar
  47. 47.
    Sun YG, Cui H, Li YH, Zhao HZ, Lin XQ (2000) Flow injection analysis of tannic acid with inhibited electrochemiluminescent detection. Anal Lett 33(11):2281–2291. doi: 10.1080/00032710008543189 CrossRefGoogle Scholar
  48. 48.
    Wang J, Zhao WW, Tian CY, Xu JJ, Chen HY (2012) Highly efficient quenching of electrochemiluminescence from CdS nanocrystal film based on biocatalytic deposition. Talanta 89:422–426CrossRefGoogle Scholar
  49. 49.
    Zhu Y, Zhao B, Li L, Chen W, Tang W, Zhao G (2010) Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) by caffeic acid. Anal Lett 43(13):2105–2113. doi: 10.1080/00032711003698804 CrossRefGoogle Scholar
  50. 50.
    Chen Z, Zu Y (2008) Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching. J Electroanal Chem 612(1):151–155. doi: 10.1016/j.jelechem.2007.09.018 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Saima Parveen
    • 1
  • Muhammad Sohail Aslam
    • 2
  • Lianzhe Hu
    • 3
    • 4
  • Guobao Xu
    • 1
  1. 1.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.University College of PharmacyUniversity of the PunjabLahorePakistan
  3. 3.Chinese Academy of Sciences, State Key Laboratory of ElectroanalyticalChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China
  4. 4.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations