Skip to main content

Quenching of ECL

  • Chapter
  • First Online:
Electrogenerated Chemiluminescence

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

ECL quenching may play an important role in designing new methodologies for sensitive detection of analytes. Quenching proposes prospective advantages in the framework of ECL and has acquired considerable attention and is inextricably associated with the selectivity of luminophore and co-reactant. It can be used in diverse fields in the detection of many analytes, DNA detection, and hybridization, etc. Processes, reactions, and equations involving quenching are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard AJ (2004) Electrogenerated chemiluminescence. Taylor & Francis, London

    Book  Google Scholar 

  2. Kuhn H (1970) Classical aspects of energy transfer in molecular systems. J Chem Phy 53(1):101–108. doi:10.1063/1.1673749

    Article  CAS  Google Scholar 

  3. Chance RR, Prock A, Silbey R (1975) Comments on the classical theory of energy transfer. J Chem Phy 62(6):2245–2254. doi:10.1063/1.430748

    Article  CAS  Google Scholar 

  4. Chandross EA, Visco RE (1968) Preannihilation electrochemiluminescence and the heterogeneous electrochemical formation of excited states. J Phy Chem 72(1):378–379

    Article  CAS  Google Scholar 

  5. Greenway GM, Knight AW, Knight PJ (1995) Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2[prime or minute]-bipyridine)ruthenium(II). Analyst 120(10):2549–2552

    Article  CAS  Google Scholar 

  6. Zheng H, Zu Y (2005) Highly efficient quenching of coreactant electrogenerated chemiluminescence by phenolic compounds. J phy chem B 109(33):16047–16051. doi:10.1021/jp052843o

    Article  CAS  Google Scholar 

  7. Zheng H, Zu Y (2005) Emission of tris(2,2′-bipyridine)ruthenium(II) by coreactant electrogenerated chemiluminescence: from O2-insensitive to highly O2-sensitive. J physl chem B 109(24):12049–12053. doi:10.1021/jp050350d

    Article  CAS  Google Scholar 

  8. Pizzocaro C, Ml Bolte, Hoffman MZ (1992) Cr(bpy)3 3+ -sensitized photo-oxidation of phenol in aqueous solution. J Photochem Photobio A 68(1):115–119

    Article  CAS  Google Scholar 

  9. Brune SN, Bobbitt DR (1992) Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2′-bipyridyl)ruthenium(III) with amino acids. Anal Chem 64(2):166–170

    Article  CAS  Google Scholar 

  10. McCall J, Alexander C, Richter MM (1999) Quenching of electrogenerated chemiluminescence by phenols, hydroquinones, catechols, and benzoquinones. Anal Chem 71(13):2523–2527

    Article  CAS  Google Scholar 

  11. McCall J, Richter MM (2000) Phenol substituent effects on electrogenerated chemiluminescence quenching. Analyst 125(3):545–548

    Article  CAS  Google Scholar 

  12. Chi Y, Dong Y, Chen G (2007) Inhibited Ru(bpy)3 2+ electrochemiluminescence related to electrochemical oxidation activity of inhibitors. Anal Chem 79(12):4521–4528. doi:10.1021/ac0702443

    Article  CAS  Google Scholar 

  13. Qiu B, Xue L, Wu Y, Lin Z, Guo L, Chen G (2011) Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)3 2+) electrochemiluminescence and its application for sensitive determination of some inorganic oxidants. Talanta 85(1):339–344. doi:10.1016/j.talanta.2011.03.063

    Article  CAS  Google Scholar 

  14. Guo L, Xue L, Qiu B, Lin Z, Kim D, Chen G (2010) Mechanism study on inhibited Ru(bpy)3 2+ electrochemiluminescence between coreactants. Phys Chem Chem Phy 12(39):12826–12832. doi:10.1039/c004277c

    Article  CAS  Google Scholar 

  15. Li X, Sun L, Ding T (2011) Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates. Biosens Bioelectron 26(8):3570–3576. doi:10.1016/j.bios.2011.02.003

    Article  CAS  Google Scholar 

  16. Yu X, Dai J, Yang L, Xiao D (2010) 1-Butyl-3-methylimidazolium based ionic liquid as solvent for determination of hydrophobic naphthol with the electrogenerated chemiluminescence of tris(2,2′-bipyridine) ruthenium(II). Analyst 135(3):630–635. doi:10.1039/b916435a

    Article  CAS  Google Scholar 

  17. Qiu B, Jiang X, Guo L, Lin Z, Cai Z, Chen G (2011) A highly sensitive method for detection of protein based on inhibition of Ru(bpy)3 2+/TPrA electrochemiluminescent system. Electrochim Acta 56(20):6962–6965. doi:10.1016/j.electacta.2011.06.016

    Article  CAS  Google Scholar 

  18. Wu A-H, Sun JJ, Zheng RJ, Yang HH, Chen GN (2010) A reagentless DNA biosensor based on cathodic electrochemiluminescence at a C/C(x)O(1−x) electrode. Talanta 81(3):934–940. doi:10.1016/j.talanta.2010.01.040

    Article  CAS  Google Scholar 

  19. Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)3 2+-doped silica nanoparticle ECL by ferrocene. Chem Comm 46(41):7751–7753. doi:10.1039/c0cc03225e

    Article  CAS  Google Scholar 

  20. Wang X, He P, Fang Y (2010) A solid-state electrochemiluminescence biosensing switch for detection of DNA hybridization based on ferrocene-labeled molecular beacon. J Lumin 130(8):1481–1484. doi:10.1016/j.jlumin.2010.03.016

    Article  CAS  Google Scholar 

  21. Wang X, Dong P, Yun W, Xu Y, He P, Fang Y (2010) Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon. Talanta 80(5):1643–1647. doi:10.1016/j.talanta.2009.09.060

    Article  CAS  Google Scholar 

  22. Liao Y, Yuan R, Chai Y, Mao L, Zhuo Y, Yuan Y, Bai L, Yuan S (2011) Electrochemiluminescence quenching via capture of ferrocene-labeled ligand-bound aptamer molecular beacon for ultrasensitive detection of thrombin. Sens Actuators B 158(1):393–399. doi:10.1016/j.snb.2011.06.045

    Article  CAS  Google Scholar 

  23. Xu Y, Dong P, Zhang X, He P, Fang Y (2011) Solid-state electrochemiluminescence protein biosensor with aptamer substitution strategy. Sci China-Chem 54(7):1109–1115. doi:10.1007/s11426-011-4278-y

    Article  CAS  Google Scholar 

  24. Ye S, Li H, Cao W (2011) Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 26(5):2215–2220. doi:10.1016/j.bios.2010.09.037

    Article  CAS  Google Scholar 

  25. Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26(5):2645–2650. doi:10.1016/j.bios.2010.11.028

    Article  CAS  Google Scholar 

  26. Hindson CM, Hanson GR, Francis PS, Adcock JL, Barnett NW (2011) Any old radical won't do: an EPR study of the selective excitation and quenching mechanisms of Ru(bipy)3 2+ chemiluminescence and electrochemiluminescence. Chem Eur J 17(29):8018–8022. doi:10.1002/chem.201100877

    Article  CAS  Google Scholar 

  27. Li F, Cui H, Lin XQ (2002) Determination of adrenaline by using inhibited Ru(bpy)3 2+ electrochemiluminescence. Anal Chim Acta 471(2):187–194. doi:10.1016/s0003-2670(02)00930-3

    Article  CAS  Google Scholar 

  28. Guo Z, Gai P, Hao T, Duan J, Wang S (2011) Determination of malachite green residues in fish using a highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction. J Agr Food Chem 59(10):5257–5262. doi:10.1021/jf2008502

    Article  CAS  Google Scholar 

  29. Chen J, Miyake M, Chi Y, Nishiumi T, Aoki K (2007) Determination of nitric oxide by quenching electro-chemiluminescence of tris(2,2′-bipyridyl)ruthenium in flow injection analysis. Electroanalysis 19(2–3):181–184. doi:10.1002/elan.200603689

    Article  CAS  Google Scholar 

  30. Sun YG, Cui H, Li YH, Lin XQ (2000) Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53(3):661–666. doi:10.1016/s0039-9140(00)00550-6

    Article  CAS  Google Scholar 

  31. Guo Z, Gai P (2011) Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta 688(2):197–202. doi:10.1016/j.aca.2010.12.043

    Article  CAS  Google Scholar 

  32. Pang YQ, Cui H, Zheng HS, Wan GH, Liu LJ, Yu XF (2005) Flow injection analysis of tetracyclines using inhibited Ru(bPY)3 2+/tripropylamine electrochemiluminescence system. Luminescence 20(1):8–15. doi:10.1002/bio.793

    Article  CAS  Google Scholar 

  33. Hua L, Zhou J, Han H (2010) Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim Acta 55(3):1265–1271. doi:10.1016/j.electacta.2009.10.038

    Article  CAS  Google Scholar 

  34. Mei YL, Wang HS, Li YF, Pan ZY, Jia WL (2010) Electrochemiluminescence of CdTe/CdS quantum dots with tripropylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis 22(2):155–160. doi:10.1002/elan.200904685

    Article  CAS  Google Scholar 

  35. Shan Y, Xu J–J, Chen H-Y (2010) Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Chem Comm 46(28):5079–5081. doi:10.1039/c0cc00837k

    Article  CAS  Google Scholar 

  36. Shan Y, Xu J–J, Chen H-Y (2011) Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3(7):2916–2923. doi:10.1039/c1nr10175g

    Article  CAS  Google Scholar 

  37. Liu X, Cheng L, Lei J, Liu H, Ju H (2010) Formation of surface traps on quantum dots by bidentate chelation and their application in low-potential electrochemiluminescent biosensing. Chem Eur J 16(35):10764–10770. doi:10.1002/chem.201001738

    Article  CAS  Google Scholar 

  38. Dennany L, Gerlach M, O'Carroll S, Keyes TE, Forster RJ, Bertoncello P (2011) Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. J Mat Chem 21(36):13984–13990. doi:10.1039/c1jm12183a

    Article  CAS  Google Scholar 

  39. Chu H–H, Yan J-L, Tu Y-F (2010) Study on a luminol-based electrochemiluminescent sensor for label-free DNA sensing. Sensors 10(10):9481–9492. doi:10.3390/s101009481

    Article  CAS  Google Scholar 

  40. Zhu LD, Li YX, Zhu GY (2002) Flow injection determination of dopamine based on inhibited electrochemiluminescence of luminol. Anal Lett 35(15):2527–2537. doi:10.1081/al-120016542

    Article  CAS  Google Scholar 

  41. Kang JZ, Yin XB, Yang XR, Wang EK (2005) Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. Electrophoresis 26(9):1732–1736. doi:10.1002/elps.200410247

    Article  CAS  Google Scholar 

  42. Zhao J, Chen M, Yu C, Tu Y (2011) Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine. Analyst 136(19):4070–4074. doi:10.1039/c1an15458c

    Article  CAS  Google Scholar 

  43. Li F, Pang YQ, Lin XQ, Cui H (2003) Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes. Talanta 59(3):627–636. doi:10.1016/s0039-9140(02)00576-3

    Article  CAS  Google Scholar 

  44. Xue L, Guo L, Qiu B, Lin Z, Chen G (2009) Mechanism for inhibition of/DBAE electrochemiluminescence system by dopamine. Electrochem Commun 11(8):1579–1582

    Article  CAS  Google Scholar 

  45. Lin XQ, Li F, Pang YQ, Cui H (2004) Flow injection analysis of gallic acid with inhibited electrochemiluminescence detection. Anal Bioanal Chem 378(8):2028–2033. doi:10.1007/s00216-004-2519-z

    Article  CAS  Google Scholar 

  46. Wang CY, Huang HJ (2003) Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)3 2+-tripropylamine system. Anal Chim Acta 498(1–2):61–68. doi:10.1016/j.aca.2003.08.064

    Article  CAS  Google Scholar 

  47. Sun YG, Cui H, Li YH, Zhao HZ, Lin XQ (2000) Flow injection analysis of tannic acid with inhibited electrochemiluminescent detection. Anal Lett 33(11):2281–2291. doi:10.1080/00032710008543189

    Article  CAS  Google Scholar 

  48. Wang J, Zhao WW, Tian CY, Xu JJ, Chen HY (2012) Highly efficient quenching of electrochemiluminescence from CdS nanocrystal film based on biocatalytic deposition. Talanta 89:422–426

    Article  CAS  Google Scholar 

  49. Zhu Y, Zhao B, Li L, Chen W, Tang W, Zhao G (2010) Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) by caffeic acid. Anal Lett 43(13):2105–2113. doi:10.1080/00032711003698804

    Article  CAS  Google Scholar 

  50. Chen Z, Zu Y (2008) Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching. J Electroanal Chem 612(1):151–155. doi:10.1016/j.jelechem.2007.09.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Parveen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Parveen, S., Aslam, M.S., Hu, L., Xu, G. (2013). Quenching of ECL. In: Electrogenerated Chemiluminescence. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39555-0_6

Download citation

Publish with us

Policies and ethics