Advertisement

ECL Luminophores

  • Saima Parveen
  • Muhammad Sohail Aslam
  • Lianzhe Hu
  • Guobao Xu
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Finding new luminophores with higher ECL efficiencies and modifying a moiety of the emitter to use it for the labeling of biomolecules are the two driving forces that lead to the synthesis of a number of new ECL-emitting species in the past several years. Three categories of luminophores are discussed in this chapter, including (a) inorganic systems, which mainly contain organometallic complexes; (b) organic systems, which cover polycyclic aromatic hydrocarbons (PAHs); and (c) semiconductor nanoparticle systems.

Keywords

Luminophores Organic systems Inorganic systems Dendrimers Nanoparticle systems Nanoclusters Carbon nanoparticles Semiconductor nanocrystals Quantum dots 

References

  1. 1.
    Hercules DM (1964) Chemiluminescence resulting from electrochemically generated species. Science 145(3634):808–809. doi: 10.1126/science.145.3634.808 (New York, NY)Google Scholar
  2. 2.
    Santhanam KSV, Bard AJ (1965) Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J Am Chem Soc 87(1):139–140. doi: 10.1021/ja01079a039 Google Scholar
  3. 3.
    Visco RE, Chandross EA (1964) Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc 86(23):5350–5351Google Scholar
  4. 4.
    Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125(5):789–791Google Scholar
  5. 5.
    Littig JS, Nieman TA (1992) Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection. Anal Chem 64(10):1140–1144Google Scholar
  6. 6.
    Fan FRF, Mau A, Bard AJ (1985) Electrogenerated chemiluminescence, a chemiluminescent polymer based on poly(vinyl-9,10-diphenylanthracene). Chem Phy Lett 116(5):400–404Google Scholar
  7. 7.
    Prieto I, Teetsov J, Fox MA, Vanden Bout DA, Bard AJ (2000) A study of excimer emission in solutions of poly(9,9-dioctylfluorene) using electrogenerated chemiluminescence. J Phy Chem A 105(3):520–523Google Scholar
  8. 8.
    Richter MM, Fan F-RF, Klavetter F, Heeger AJ, Bard AJ (1994) Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2,5-polyphenylenevinylene. Chem Phy Lett 226(12):115–120Google Scholar
  9. 9.
    Sartin MM, Boydston AJ, Pagenkopf BL, Bard AJ (2006) Electrochemistry, spectroscopy, and electrogenerated chemiluminescence of silole-based chromophores. J Am Chem Soc 128(31):10163–10170Google Scholar
  10. 10.
    Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036. doi: 10.1021/cr020373d Google Scholar
  11. 11.
    Pyati R, Richter MM (2007) ECL-electrochemical luminescence. Ann Rep Sec C (Phyl Chem) 103(0):12–78Google Scholar
  12. 12.
    Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. doi: 10.1021/cr068083a Google Scholar
  13. 13.
    Bard AJ (2004) Electrogenerated chemiluminescence. Taylor & Francis, LondonGoogle Scholar
  14. 14.
    Legg KD, Hercules DM (1969) Electrochemically generated chemiluminescence of lucigenin. J Am Chem Soc 91(8):1902–1907Google Scholar
  15. 15.
    Haapakka KE, Kankare JJ (1981) Electrogenerated chemiluminescence of lucigenin in aqueous alkaline solutions at a platinum electrode. Anal Chim Acta 130(2):415–418Google Scholar
  16. 16.
    Zhang C, Qi H (2002) Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution. Anal Sci 18(7):819–822. doi: 10.2116/analsci.18.819 Google Scholar
  17. 17.
    Lin JM, Yamada M (1998) Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay. Microchem J 58(1):105–116. doi: 10.1006/mchj.1997.1539 Google Scholar
  18. 18.
    Nan Chen G, Zhang L, Er Lin R, Cong Yang Z, Ping Duan J, Qing Chen H, Brynn Hibbert D (2000) The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta 50(6):1275–1281Google Scholar
  19. 19.
    Okajima T, Ohsaka T (2002) Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants. J Electroanal Chem 534(2):181–187Google Scholar
  20. 20.
    Omer KM, Ku S-Y, Wong K-T, Bard AJ (2009) Efficient and stable blue electrogenerated chemiluminescence of fluorene-substituted aromatic hydrocarbons. Angew Chem Int Ed 48(49):9300–9303Google Scholar
  21. 21.
    Oh JW, Lee YO, Kim TH, Ko KC, Lee JY, Kim H, Kim JS (2009) Enhancement of electrogenerated chemiluminescence and radical stability by peripheral multidonors on alkynylpyrene derivatives. Angew Chem Int Ed 48(14):2522–2524Google Scholar
  22. 22.
    Horiuchi T, Niwa O, Hatakenaka N (1998) Evidence for laser action driven by electrochemiluminescence. Nature 394(6694):659–661Google Scholar
  23. 23.
    Lai RY, Bard AJ (2003) Electrogenerated chemiluminescence 71. Photophysical, electrochemical, and electrogenerated chemiluminescent properties of selected dipyrromethene BF2 dyes. J Phy Chem B 107(21):5036–5042Google Scholar
  24. 24.
    Chen X, Chen W, Wang XR (2000) Electrochemiluminescent behaviour of vitamin B-1 (thiamine) and tris(2,2′-bipyridyl) ruthenium in a flow system. Acta Chim Sinica 58(5):563–566Google Scholar
  25. 25.
    Zhang C, Zhou G, Zhang Z, Aizawa M (1999) Highly sensitive electrochemical luminescence determination of thiamine. Anal Chim Acta 394(23):165–170Google Scholar
  26. 26.
    Sartin MM, Shu C, Bard AJ (2008) Electrogenerated chemiluminescence of a spirobifluorene-linked bisanthracene: a possible simultaneous, two-electron transfer. J Am Chem Soc 130(15):5354–5360Google Scholar
  27. 27.
    Rashidnadimi S, Hung TH, Wong KT, Bard AJ (2007) Electrochemistry and electrogenerated chemiluminescence of 3,6-Di(spirobifluorene)-N-phenylcarbazole. J Am Chem Soc 130(2):634–639Google Scholar
  28. 28.
    Lee SK, Zu Y, Herrmann A, Geerts Y, MÃllen K, Bard AJ (1999) Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J Am Chem Soc 121(14):3513–3520Google Scholar
  29. 29.
    Booker C, Wang X, Haroun S, Zhou J, Jennings M, Pagenkopf BL, Ding Z (2008) Tuning of electrogenerated silole chemiluminescence. Angew Chem Int Ed 47(40):7731–7735Google Scholar
  30. 30.
    Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. doi: 10.1039/b923679c Google Scholar
  31. 31.
    Chen GN, Lin RE, Zhao ZF, Duan JP, Zhang L (1997) Electrogenerated chemiluminescence for determination of indole and tryptophan. Anal Chim Acta 341(23):251–256Google Scholar
  32. 32.
    Lee SK, Richter MM, Strekowski L, Bard AJ (1997) Electrogenerated chemiluminescence. 61. Near-IR electrogenerated chemiluminescence, electrochemistry, and spectroscopic properties of a heptamethine cyanine dye in MeCN. Anal Chem 69(20):4126–4133Google Scholar
  33. 33.
    Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126(27):8358–8359Google Scholar
  34. 34.
    Rosado DJ, Miao W, Sun Q, Deng Y (2006) Electrochemistry and electrogenerated chemiluminescence of all-trans conjugated polymer poly[distyrylbenzene-b-(ethylene oxide)]s. J Phy Chem B 110(32):15719–15723Google Scholar
  35. 35.
    Chang YL, Palacios RE, Chen JT, Stevenson KJ, Guo S, Lackowski WM, Barbara PF (2009) Electrogenerated chemiluminescence of soliton waves in conjugated polymers. J Am Chem Soc 131(40):14166–14167Google Scholar
  36. 36.
    Strauß J, Daub J (2002) Donor–acceptor functionalized luminescent hairpin peptides: electrochemiluminescence of pyrene/phenothiazine-substituted optically active systems. Adv Mat 14(22):1652–1655Google Scholar
  37. 37.
    Bezman R, Faulkner LR (1972) Mechanisms of chemiluminescent electron-transfer reactions. VI. Absolute measurements of luminescence from the fluoranthene-10-methylphenothiazine system in N, N-dimethylformamide. J Am Chem Soc 94(18):6331–6337Google Scholar
  38. 38.
    Faulkner LR, Freed DJ (1971) Mechanisms of chemiluminescent electron-transfer reactions. II. Triplet yield of electron transfer in the fluoranthene-10-methylphenothiazine system. J Am Chem Soc 93(15):3565–3568Google Scholar
  39. 39.
    Faulkner LR, Freed DJ (1971) Mechanisms of chemiluminescent electron-transfer reactions. I. Role of the triplet state in energy-deficient systems. J Am Chem Soc 93(9):2097–2102Google Scholar
  40. 40.
    Slaterbeck AF, Meehan TD, Gross EM, Wightman RM (2002) Selective population of excited states during electrogenerated chemiluminescence with 10-methylphenothiazine. J Phy Chem B 106(23):6088–6095Google Scholar
  41. 41.
    Dong YP, Cui H, Wang CM (2006) Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode. J Phy Chem B 110(37):18408–18414. doi: 10.1021/jp062396s Google Scholar
  42. 42.
    Dong Y-P, Cui H, Xu Y (2006) Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes. Langmuir 23(2):523–529Google Scholar
  43. 43.
    Cui H, Xu Y, Zhang Z-F (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76(14):4002–4010Google Scholar
  44. 44.
    Chang M–M, Saji T, Bard AJ (1977) Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J Am Chem Soc 99(16):5399–5403. doi: 10.1021/ja00458a028 Google Scholar
  45. 45.
    Zu Y, Bard AJ (2000) Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem 72(14):3223–3232Google Scholar
  46. 46.
    Skotty DR, Lee WY, Nieman TA (1996) Determination of dansyl amino acids and oxalate by HPLC with electrogenerated chemiluminescence detection using tris(2,2′-bipyridyl)ruthenium(II) in the mobile phase. Anal Chem 68(9):1530–1535. doi: 101021/ac951087n Google Scholar
  47. 47.
    Zorzi M, Pastore P, Magno F (2000) A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)3 2+ in aqueous solution. Anal Chem 72(20):4934–4939. doi: 10.1021/ac991222m Google Scholar
  48. 48.
    Xu G, Dong S (2000) Electrochemiluminescent detection of chlorpromazine by selective preconcentration at a lauric acid-modified carbon paste electrode using tris(2,2′-bipyridine)ruthenium(II). Anal Chem 72(21):5308–5312Google Scholar
  49. 49.
    Shi Liu, Li Xu (2006) Electrochemiluminescent detection based on solid-phase extraction at tris(2,2′-bipyridyl)ruthenium(II)-modified ceramic carbon electrode. Anal Chem 78(20):7330–7334Google Scholar
  50. 50.
    Malins C, Vandeloise R, Walton D, Vander Donckt E (1997) Ultrasonic modification of light emission from electrochemiluminescence processes. J Phy Chem A 101(28):5063–5068Google Scholar
  51. 51.
    Walton DJ, Phull SS, Bates DM, Lorimer JP, Mason TJ (1992) Sonochemical enhancement of electrochemiluminescence. Ultrasonics 30(3):186–191Google Scholar
  52. 52.
    Schmittel M, Lin H-W (2007) Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angew Chem Int Ed 46(6):893–896Google Scholar
  53. 53.
    Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of cdTe nanoparticles. Nano Lett 4(6):1153–1161Google Scholar
  54. 54.
    Bruce D, Richter MM (2002) Electrochemiluminescence in aqueous solution of a ruthenium(ii) bipyridyl complex containing a crown ether moiety in the presence of metal ions. Analyst 127(11):1492–1494Google Scholar
  55. 55.
    Lai RY, Chiba M, Kitamura N, Bard AJ (2001) Electrogenerated chemiluminescence. 68. Detection of sodium ion with a ruthenium(ii) complex with crown ether moiety at the 3,3′-positions on the 2,2′-bipyridine ligand. Anal Chem 74(3):551–553Google Scholar
  56. 56.
    Chen Y, Lin Z, Chen J, Sun J, Zhang L, Chen G (2007) New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)3 2+/multi-wall-carbon-nanotube paste electrode. J Chromatogr A 1172(1):84–91 Epub 2007 Oct 22Google Scholar
  57. 57.
    Muegge BD, Richter MM (2001) Electrochemiluminescent detection of metal cations using a ruthenium(ii) bipyridyl complex containing a crown ether moiety. Anal Chem 74(3):547–550Google Scholar
  58. 58.
    Berni E, Gosse I, Badocco D, Pastore P, Sojic N, Pinet S (2009) Differential photoluminescent and electrochemiluminescent detection of anions with a modified ruthenium(ii)–bipyridyl complex. Chem A Eur J 15(20):5145–5152Google Scholar
  59. 59.
    Collinson MM, Taussig J, Martin SA (1999) Solid-state electrogenerated chemiluminescence from gel-entrapped ruthenium(ii) tris(bipyridine) and tripropylamine. Chem Mat 11(9):2594–2599Google Scholar
  60. 60.
    Collinson MM, Novak B, Martin SA, Taussig JS (2000) Electrochemiluminescence of ruthenium(II) tris(bipyridine) encapsulated in sol gel glasses. Anal Chem 72(13):2914–2918Google Scholar
  61. 61.
    Khramov AN, Collinson MM (2000) Electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) ion-exchanged in nafion silica composite films. Anal Chem 72(13):2943–2948Google Scholar
  62. 62.
    McCall J, Bruce D, Workman S, Cole C, Richter MM (2001) Electrochemiluminescence of copper(I) Bis(2,9-dimethyl-1,10-phenanthroline). Anal Chem 73(19):4617–4620Google Scholar
  63. 63.
    Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J Am Chem Soc 112(12):4960–4962Google Scholar
  64. 64.
    Hu L, Bian Z, Li H, Han S, Yuan Y, Gao L, Xu G (2009) [Ru(bpy)2d ppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Anal Chem 81(23):9807–9811Google Scholar
  65. 65.
    Sun X, Du Y, Zhang L, Dong S, Wang E (2007) Luminescent supramolecular microstructures containing Ru(bpy)3 2+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal Chem 79(6):2588–2592. doi: 10.1021/ac062130h Google Scholar
  66. 66.
    Gonzales-Velasco J, Rubinstein I, Crutchley RJ, Lever ABP, Bard AJ (1983) Electrogenerated chemiluminescence. 42. Electrochemistry and electrogenerated chemiluminescence of the tris(2,2′-bipyrazine)ruthenium(II) system. Inorg Chem 22(5):822–825Google Scholar
  67. 67.
    Mark R (2004) Metal chelate systems. Electrogenerated chemiluminescence. CRC Press, Boca Raton, pp 301–358Google Scholar
  68. 68.
    Knight AW, Greenway GM (1994) Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence—review. Analyst 119(5):879–890. doi: 10.1039/an9941900879 Google Scholar
  69. 69.
    Yu J, Fan F-RF, Pan S, Lynch VM, Omer KM, Bard AJ (2008) Spontaneous formation and electrogenerated chemiluminescence of tris(bipyridine) Ru(II) derivative nanobelts. J Am Chem Soc 130(23):7196–7197Google Scholar
  70. 70.
    Wang S, Milam J, Ohlin AC, Rambaran VH, Clark E, Ward W, Seymour L, Casey WH, Holder AA, Miao W (2009) Electrochemical and electrogenerated chemiluminescent studies of a trinuclear complex, [((phen)2Ru(dpp))2RhCl2]5+, and its interactions with calf thymus DNA. Anal Chem 81(10):4068–4075. doi: 10.1021/ac900282y Google Scholar
  71. 71.
    Richter MM, Bard AJ, Kim W, Schmehl RH (1998) Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores. Anal Chem 70(2):310–318. doi: 10.1021/ac970736n
  72. 72.
    Zhou M, Roovers J, Robertson GP, Grover CP (2003) Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal Chem 75(23):6708–6717Google Scholar
  73. 73.
    Sun S, Yang Y, Liu F, Pang Y, Fan J, Sun L, Peng X (2009) Study of highly efficient bimetallic ruthenium tris-bipyridyl ecl labels for coreactant system. Anal Chem 81(24):10227–10231Google Scholar
  74. 74.
    Andersson A-M, Isovitsch R, Miranda D, Wadhwa S, Schmehl RH (2000) Electrogenerated chemiluminescence from Ru bipyridylphosphonic acid complexes adsorbed to mesoporous TiO/ITO electrodes. Chem Comm 0(6):505–506Google Scholar
  75. 75.
    Lo KKW, Chung CK, Lee TKM, Lui LH, Tsang KHK, Zhu N (2003) New luminescent cyclometalated iridium(iii) diimine complexes as biological labeling reagents. Inorg Chem 42(21):6886–6897Google Scholar
  76. 76.
    Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA* + cation radicals. J Am Chem Soc 124(48):14478–14485Google Scholar
  77. 77.
    Chen Z, Wong KMC, Au VKM, Zu Y, Yam VWW (2009) Electrogenerated chemiluminescence of a bis-cyclometalated alkynylgold(iii) complex with irreversible oxidation using tri-n-propylamine as co-reactant. Chem Comm 0(7):791–793Google Scholar
  78. 78.
    Bruce D, Richter MM (2002) Green electrochemiluminescence from ortho-metalated tris(2-phenylpyridine)iridium(III). Anal Chem 74(6):1340–1342Google Scholar
  79. 79.
    Cole C, Muegge BD, Richter MM (2003) Effects of poly(ethylene glycol) tert-octylphenyl ether on tris(2-phenylpyridine)iridium(III) tripropylamine electrochemiluminescence. Anal Chem 75(3):601–604Google Scholar
  80. 80.
    Muegge BD, Richter MM (2003) Multicolored electrogenerated chemiluminescence from ortho-metalated iridium(iii) systems. Anal Chem 76(1):73–77Google Scholar
  81. 81.
    Nishimura K, Hamada Y, Tsujioka T, Shibata K, Fuyuki T (2001) Solution electrochemiluminescent cell using tris(phenylpyridine) iridium. Jap J App Phy 40 (Part 2, No. 9A/B):L945–L947. doi: 10.1143/JJAP.40.L945
  82. 82.
    Kiran RV, Zammit EM, Hogan CF, James BD, Barnett NW, Francis PS (2009) Chemiluminescence from reactions with bis-cyclometalated iridium complexes in acidic aqueous solution. Analyst 134(7):1297–1298Google Scholar
  83. 83.
    Gross EM, Armstrong NR, Wightman RM (2002) Electrogenerated chemiluminescence from phosphorescent molecules used in organic light-emitting diodes. J Electrochem Soc 149(5):E137–E142. doi: 10.1149/1.1464137 Google Scholar
  84. 84.
    Kapturkiewicz A, Angulo G (2003) Extremely efficient electrochemiluminescence systems based on tris(2-phenylpyridine)iridium(iii). Dalton Trans 0(20):3907–3913Google Scholar
  85. 85.
    Martin RB (1994) Aluminum: a neurotoxic product of acid rain. Acc Chem Res 27(7):204–210Google Scholar
  86. 86.
    Muegge BD, Brooks S, Richter MM (2003) Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution. Anal Chem 75(5):1102–1105Google Scholar
  87. 87.
    High B, Bruce D, Richter MM (2001) Determining copper ions in water using electrochemiluminescence. Anal Chim Acta 449(12):17–22Google Scholar
  88. 88.
    Walworth J, Brewer KJ, Richter MM (2004) Enhanced electrochemiluminescence from Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene) in the presence of triton X-100 (polyethylene glycol tert-octylphenyl ether). Anal Chim Acta 503(2):241–245Google Scholar
  89. 89.
    Bolletta F, Rossi A, Balzani V (1981) Chemiluminescence on oxidation of tris(2,2′-bipyridine)chromium(II): chemical generation of a metal centered excited state. Inorg Chim Acta 53:L23–L24Google Scholar
  90. 90.
    Bruce D, Richter MM, Brewer KJ (2002) Electrochemiluminescence from Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene). Anal Chem 74(13):3157–3159Google Scholar
  91. 91.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297Google Scholar
  92. 92.
    Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2(11):1315–1319Google Scholar
  93. 93.
    Haram SK, Quinn BM, Bard AJ (2004) Nano Lett 4:183–185Google Scholar
  94. 94.
    Shen L, Cui X, Qi H, Zhang C (2007) Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J Phy Chem C 111(23):8172–8175Google Scholar
  95. 95.
    Sun L, Bao L, Hyun B-R, Bartnik AC, Zhong Y-W, Reed JC, Pang D-W, Abrun HD, Malliaras GG, Wise FW (2008) Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett 9(2):789–793Google Scholar
  96. 96.
    Hu X, Han H, Hua L, Sheng Z (2010) Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide. Biosens Bioelectron 25(7):1843–1846Google Scholar
  97. 97.
    Fan F-RF, Park S, Zhu Y, Ruoff RS, Bard AJ (2008) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131(3):937–939Google Scholar
  98. 98.
    Liu X, Jiang H, Lei J, Ju H (2007) Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem 79(21):8055–8060. doi: 10.1021/ac070927i Google Scholar
  99. 99.
    Jie G, Liu B, Pan H, Zhu J–J, Chen H-Y (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79(15):5574–5581Google Scholar
  100. 100.
    Wang Y, Lu J, Tang L, Chang H, Li J (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81(23):9710–9715Google Scholar
  101. 101.
    Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131(13):4564–4565Google Scholar
  102. 102.
    Zhang L, Zou X, Ying E, Dong S (2008) Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J Phy Chem C 112(12):4451–4454Google Scholar
  103. 103.
    Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3(8):1053–1055Google Scholar
  104. 104.
    Wehrenberg BL, Guyot-Sionnest P (2003) Electron and hole injection in PbSe quantum dot films. J Am Chem Soc 125(26):7806–7807Google Scholar
  105. 105.
    Guyot-Sionnest P, Wang C (2003) Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films. J Phy Chem B 107(30):7355–7359Google Scholar
  106. 106.
    Hikmet RAM, Talapin DV, Weller H (2003) Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J App Phys 93(6):3509–3514. doi: 10.1063/1.1542940 Google Scholar
  107. 107.
    Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Quantum dot chemiluminescence. Nano Lett 4(4):693–698Google Scholar
  108. 108.
    Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Comm 0(34):5118–5120Google Scholar
  109. 109.
    Díez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48(12):2122–2125Google Scholar
  110. 110.
    Omer KM, Bard AJ (2009) Electrogenerated chemiluminescence of aromatic hydrocarbon nanoparticles in an aqueous solution. J Phy Chem C 113(27):11575–11578Google Scholar
  111. 111.
    Cui H, Wang W, Duan C-F, Dong Y-P, Guo J-Z (2007) Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chem Eur J 13(24):6975–6984. doi: 10.1002/chem.200700011 Google Scholar
  112. 112.
    Wang W, Xiong T, Cui H (2008) Fluorescence and electrochemiluminescence of luminol-reduced gold nanoparticles: photostability and platform effect. Langmuir 24(6):2826–2833Google Scholar
  113. 113.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297. doi: 10.1126/science.1069336 (New York, NY)Google Scholar
  114. 114.
    Bard AJ, Ding Z, Myung N (2005) Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films In: Semiconductor nanocrystals and silicate nanoparticles. Structure and bonding, vol 181. Springer, Berlin, pp 1–57. doi: 10.1007/b137239

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Saima Parveen
    • 1
  • Muhammad Sohail Aslam
    • 2
  • Lianzhe Hu
    • 3
    • 4
  • Guobao Xu
    • 1
  1. 1.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.University College of PharmacyUniversity of the PunjabLahorePakistan
  3. 3.Chinese Academy of Sciences, State Key Laboratory of ElectroanalyticalChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China
  4. 4.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations