Generation Pathways of Electrogenerated Chemiluminescence

  • Saima ParveenEmail author
  • Muhammad Sohail Aslam
  • Lianzhe Hu
  • Guobao Xu
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


ECL continues to be an area of active research. This chapter provides a brief way for understanding fundamentals of ECL. An overview of selected key ECL mechanisms for the production of ECL is given. Studies on finding new ECL co-reactants, disclosing the relationship between ECL efficiencies and structure of co-reactants, and improving ECL efficiencies are also discussed.


Annihilation Pathway Electron-transfer reaction Gibbs free energy Energy sufficient reaction Reductive–oxidation co-reactant Oxidative–reduction co-reactant Hot-electron ECL 


  1. 1.
    Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated Chemiluminescence. Ann Rev Anal Chem 2:359–385. doi: 10.1146/annurev-anchem-060908-155305 CrossRefGoogle Scholar
  2. 2.
    Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. doi: 10.1021/cr068083a CrossRefGoogle Scholar
  3. 3.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Rubinstein I, Bard AJ (1981) Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on tris(2,2′-bipyridine)ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 103(3):512–516. doi: 10.1021/ja00393a006 CrossRefGoogle Scholar
  5. 5.
    Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosens Bioelectron 24(11):3191–3200. doi: 10.1016/j.bios.2009.02.013 CrossRefGoogle Scholar
  6. 6.
    Knight AW, Greenway GM (1994) Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence: review. Analyst 119(5):879–890. doi: 10.1039/an9941900879 CrossRefGoogle Scholar
  7. 7.
    Tokel NE, Bard AJ (1972) Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(II) dichloride. J Am Chem Soc 94(8):2862–2863. doi: 10.1021/ja00763a056 CrossRefGoogle Scholar
  8. 8.
    Chang M-M, Saji T, Bard AJ (1977) Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J Am Chem Soc 99(16):5399–5403. doi: 10.1021/ja00458a028 CrossRefGoogle Scholar
  9. 9.
    Michel PE, de Rooij NF, Koudelka-Hep M, Fähnrich KA, O’Sullivan CK, Guilbault GG (1999) Redox-cycling type electrochemiluminescence in aqueous medium. A new principle for the detection of proteins labeled with a ruthenium chelate. J Electroanal Chem 474(2):192–194. doi: 10.1016/S0022-0728(99)00351-4 CrossRefGoogle Scholar
  10. 10.
    Li H-J, Han S, Hu L-Z, Xu G-B (2009) Progress in Ru (bpy)(3)(2+) Electrogenerated Chemiluminescence. Chin J Anal Chem 37(11):1557–1565CrossRefGoogle Scholar
  11. 11.
    White HS, Bard AJ (1982) Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21-bpy)3 2+-S2O8 2− system in acetonitrile-water solutions. J Am Chem Soc 104(25):6891–6895. doi: 10.1021/ja00389a001 CrossRefGoogle Scholar
  12. 12.
    Miao W, Choi JP (2004) Electrogenerated Chemiluminescence. In: Marcel Dekker, New York, p 213Google Scholar
  13. 13.
    Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. doi: 10.1039/b923679c CrossRefGoogle Scholar
  14. 14.
    Ege D, Becker WG, Bard AJ (1984) Electrogenerated chemiluminescent determination of tris(2,2′-bipyridine) ruthenium ion \( \left( {{{\text{Ru}}\left( {\text{bpy}} \right)^{ 3}}_{ 2+ } } \right) \) at low levels. Anal Chem 56(13):2413-2417. doi: 10.1021/ac00277a036
  15. 15.
    Gorman BA, Francis PS, Barnett NW (2006) Tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence. Analyst 131(5):616–639. doi: 10.1039/b518454a CrossRefGoogle Scholar
  16. 16.
    Hu L, Li H, Zhu S, Fan L, Shi L, Liu X, Xu G (2007) Cathodic electrochemiluminescence in aqueous solutions at bismuth electrodes. Chem Comm 0(40):4146–4148Google Scholar
  17. 17.
    Fahnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54(4):531–559. doi: 10.1016/s0039-9140(01)00312-5 CrossRefGoogle Scholar
  18. 18.
    Egashira N, Kumasako H, Ohga K (1990) Fabrication of a fiber optic based electrochemiluminescence sensor and its application to the determination of oxalate. Anal Sci 6:903–904Google Scholar
  19. 19.
    Kanoufi F, Bard AJ (1999) Electrogenerated Chemiluminescence. 65. An investigation of the oxidation of oxalate by tris(polypyridine) ruthenium complexes and the effect of the electrochemical steps on the emission intensity. J Phy Chem B 103(47):10469–10480. doi: 10.1021/jp992368s
  20. 20.
    Forster RJ, Hogan CF (2000) Electrochemiluminescent metallopolymer coatings: Combined light and current detection in flow injection analysis. Anal Chem 72(22):5576–5582. doi: 10.1021/ac000605d CrossRefGoogle Scholar
  21. 21.
    Dennany L, O'Reilly EJ, Keyes TE, Forster RJ (2006) Electrochemiluminescent monolayers on metal oxide electrodes: Detection of amino acids. Electrochem Comm 8(10):1588–1594. doi: 10.1016/j.elecom.2006.07.022 CrossRefGoogle Scholar
  22. 22.
    Dennany L, Hogan CF, Keyes TE, Forster RJ (2006) Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers. Anal Chem 78(5):1412–1417. doi: 10.1021/ac0513919 CrossRefGoogle Scholar
  23. 23.
    Andersson A-M, Isovitsch R, Miranda D, Wadhwa S, Schmehl RH (2000) Electrogenerated chemiluminescence from Ru() bipyridylphosphonic acid complexes adsorbed to mesoporous TiO/ITO electrodes. Chem Comm 0(6):505–506Google Scholar
  24. 24.
    Bard AJ (2004) Electrogenerated Chemiluminescence. Taylor & FrancisGoogle Scholar
  25. 25.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science (New York, NY) 296(5571):1293–1297. doi: 10.1126/science.1069336
  26. 26.
    Rubinstein I, Martin CR, Bard AJ (1983) Electrogenerated chemiluminescent determination of oxalate. Anal Chem 55(9):1580–1582. doi: 10.1021/ac00260a030 CrossRefGoogle Scholar
  27. 27.
    Li F, Cui H, Lin X-Q (2002) Potential-resolved electrochemiluminescence of Ru(bpy)32+/C2O42 system on gold electrode. Luminescence 17(2):117–122. doi: 10.1002/bio.674 CrossRefGoogle Scholar
  28. 28.
    Lu M-C, Whang C-W (2004) The role of direct oxalate oxidation in electrogenerated chemiluminescence of poly(4-vinylpyridine)-bound Ru(bpy)2Cl+/oxalate system on indium tin oxide electrodes. Anal Chim Acta 522(1):25–33. doi: 10.1016/j.aca.2004.06.042 CrossRefGoogle Scholar
  29. 29.
    Downey TM, Nieman TA (1992) Chemiluminescence detection using regenerable tris(2,2′-bipyridyl)ruthenium(II) immobilized in Nafion. Anal Chem 64(3):261–268. doi: 10.1021/ac00027a005 CrossRefGoogle Scholar
  30. 30.
    Knight AW, Greenway GM (1995) Indirect, ion-annihilation electrogenerated chemiluminescence and its application to the determination of aromatic tertiary-amines. Analyst 120(4):1077–1082. doi: 10.1039/an9952001077 CrossRefGoogle Scholar
  31. 31.
    Miao W, Choi J-P, Bard AJ (2002) Electrogenerated Chemiluminescence 69: The Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/Tri-n-propylamine (TPrA) system revisited. A new route involving tpra•+ cation radicals. J Am Chem Soc 124(48):14478–14485. doi: 10.1021/ja027532v Google Scholar
  32. 32.
    Wightman RM, Forry SP, Maus R, Badocco D, Pastore P (2004) Rate-Determining Step in the Electrogenerated Chemiluminescence from Tertiary Amines with Tris(2,2′-bipyridyl)ruthenium(II). J Phy Chem B 108(50):19119–19125. doi: 10.1021/jp036034l CrossRefGoogle Scholar
  33. 33.
    Pastore P, Badocco D, Zanon F (2006) Influence of nature, concentration and pH of buffer acid–base system on rate determining step of the electrochemiluminescence of Ru(bpy)32+ with tertiary aliphatic amines. Electrochim Acta 51(25):5394–5401. doi: 10.1016/j.electacta.2006.02.009 CrossRefGoogle Scholar
  34. 34.
    Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036. doi: 10.1021/cr020373d CrossRefGoogle Scholar
  35. 35.
    Factor B, Muegge B, Workman S, Bolton E, Bos J, Richter MM (2001) Surfactant chain length effects on the light emission of tris(2,2′-bipyridyl)ruthenium(II)/tripropylamine electrogenerated chemiluminescence. Anal Chem 73(19):4621–4624CrossRefGoogle Scholar
  36. 36.
    Zu YB, Bard AJ (2001) Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2′)bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal Chem 73(16):3960–3964. doi: 10.1021/ac010230b Google Scholar
  37. 37.
    Li F, Zu Y (2004) Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2′-bipyridine)ruthenium(II)/tri-n-propylamine system: lower oxidation potential and higher emission intensity. Anal Chem 76(6):1768–1772. doi: 10.1021/ac035181c CrossRefGoogle Scholar
  38. 38.
    Xu G, Pang H-L, Xu B, Dong S, Wong K-Y (2005) Enhancing the electrochemiluminescence of tris(2,2[prime or minute]-bipyridyl)ruthenium(ii) by ionic surfactants. Analyst 130(4):541–544CrossRefGoogle Scholar
  39. 39.
    Vinyard DJ, Richter MM (2007) Enhanced Electrogenerated Chemiluminescence in the Presence of Fluorinated Alcohols. Anal Chem 79(16):6404–6409. doi: 10.1021/ac071028x CrossRefGoogle Scholar
  40. 40.
    Leland JK, Powell MJ (1990) Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using Tripropyl Amine. J Electrochem Soc 137(10):3127–3131. doi: 10.1149/1.2086171 CrossRefGoogle Scholar
  41. 41.
    Knight AW, Greenway GM (1996) Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review. Analyst 121(11):101R–106RCrossRefGoogle Scholar
  42. 42.
    Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(23):7109–7113. doi: 10.1021/ac048782s Google Scholar
  43. 43.
    Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(18):5379–5386. doi: 10.1021/ac0495236 CrossRefGoogle Scholar
  44. 44.
    Fan F-RF, Cliffel D, Bard AJ (1998) Scanning Electrochemical Microscopy. 37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy. Anal Chem 70(14):2941–2948. doi: 10.1021/ac980107t Google Scholar
  45. 45.
    Richter MM, Bard AJ, Kim W, Schmehl RH (1998) Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores. Anal Chem 70(2):310–318. doi: 10.1021/ac970736n
  46. 46.
    Andersson AM, Schmehl RH (2001) Molecular and supramolecular photochemistry 7: Optical sens switchesGoogle Scholar
  47. 47.
    Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2,2′-bipyridyl) ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 378(1–3):1–41. doi: 10.1016/s0003-2670(98)00545-5 Google Scholar
  48. 48.
    Knight AW (1999) A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trac-Trends Anal Chem 18(1):47–62. doi: 10.1016/s0165-9936(98)00086-7 CrossRefGoogle Scholar
  49. 49.
    Lee WY (1997) Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim Acta 127(1–2):19–39. doi: 10.1007/bf01243160 CrossRefGoogle Scholar
  50. 50.
    Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1979) Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. J Am Chem Soc 101(17):4815–4824. doi: 10.1021/ja00511a007 CrossRefGoogle Scholar
  51. 51.
    Liu X, Shi L, Niu W, Li H, Xu G (2007) Environmentally friendly and highly sensitive ruthenium(ii) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed 46(3):421–424. doi: 10.1002/anie.200603491 CrossRefGoogle Scholar
  52. 52.
    Han S, Niu W, Li H, Hu L, Yuan Y, Xu G (2010) Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2′-bipyridyl)ruthenium(II) concentrations. Talanta 81(1–2):44–47. doi: 10.1016/j.talanta.2009.11.037 CrossRefGoogle Scholar
  53. 53.
    Pyati R, Richter MM (2007) ECL-Electrochemical luminescence. Ann Rep Sec “C” (Phy Chem) 103(0):12–78Google Scholar
  54. 54.
    Kankare J, Fäldén K, Kulmala S, Haapakka K (1992) Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminium disc electrodes. Anal Chim Acta 256(1):17–28. doi: 10.1016/0003-2670(92)85320-6 CrossRefGoogle Scholar
  55. 55.
    Kankare J, Haapakka K, Kulmala S, Näntö V, Eskola J, Takalo H (1992) Immunoassay by time-resolved electrogenerated luminescence. Anal Chim Acta 266(2):205–212. doi: 10.1016/0003-2670(92)85044-7 CrossRefGoogle Scholar
  56. 56.
    Gaillard F, Sung Y-E, Bard AJ (1999) Hot electron generation in aqueous solution at oxide-covered tantalum electrodes. Reduction of methylpyridinium and electrogenerated chemiluminescence of Ru(bpy)3 2+. J Phy Chem B 103(4):667–674. doi: 10.1021/jp982821k Google Scholar
  57. 57.
    Nozik AJ (2001) Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Ann Rev Phy Chem 52(1):193–231. doi: 10.1146/annurev.physchem.52.1.193 Google Scholar
  58. 58.
    Verlet JRR (2008) Femtosecond spectroscopy of cluster anions: insights into condensed-phase phenomena from the gas-phase. Chem Soc Rev 37(3):505–517CrossRefGoogle Scholar
  59. 59.
    Kulmala S, Ala-Kleme T, Kulmala A, Papkovsky D, Loikas K (1998) Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes. Anal Chem 70(6):1112–1118. doi: 10.1021/ac970954g CrossRefGoogle Scholar
  60. 60.
    Xu G, Dong S (2000) Electrochemiluminescence of the Ru(bpy)3 2+/S2O82 system in purely aqueous solution at carbon paste electrode. Electroanal 12(8):583–587. doi: 10.1002/(SICI)1521-4109(200005)12 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Saima Parveen
    • 1
    Email author
  • Muhammad Sohail Aslam
    • 2
  • Lianzhe Hu
    • 3
    • 4
  • Guobao Xu
    • 1
  1. 1.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.University College of PharmacyUniversity of the PunjabLahorePakistan
  3. 3.Chinese Academy of Sciences, State Key Laboratory of ElectroanalyticalChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China
  4. 4.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations