Skip to main content

Generation Pathways of Electrogenerated Chemiluminescence

  • Chapter
  • First Online:
Electrogenerated Chemiluminescence

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

ECL continues to be an area of active research. This chapter provides a brief way for understanding fundamentals of ECL. An overview of selected key ECL mechanisms for the production of ECL is given. Studies on finding new ECL co-reactants, disclosing the relationship between ECL efficiencies and structure of co-reactants, and improving ECL efficiencies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated Chemiluminescence. Ann Rev Anal Chem 2:359–385. doi:10.1146/annurev-anchem-060908-155305

    Article  CAS  Google Scholar 

  2. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. doi:10.1021/cr068083a

    Article  CAS  Google Scholar 

  3. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  4. Rubinstein I, Bard AJ (1981) Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on tris(2,2′-bipyridine)ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 103(3):512–516. doi:10.1021/ja00393a006

    Article  CAS  Google Scholar 

  5. Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosens Bioelectron 24(11):3191–3200. doi:10.1016/j.bios.2009.02.013

    Article  CAS  Google Scholar 

  6. Knight AW, Greenway GM (1994) Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence: review. Analyst 119(5):879–890. doi:10.1039/an9941900879

    Article  CAS  Google Scholar 

  7. Tokel NE, Bard AJ (1972) Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(II) dichloride. J Am Chem Soc 94(8):2862–2863. doi:10.1021/ja00763a056

    Article  CAS  Google Scholar 

  8. Chang M-M, Saji T, Bard AJ (1977) Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J Am Chem Soc 99(16):5399–5403. doi:10.1021/ja00458a028

    Article  CAS  Google Scholar 

  9. Michel PE, de Rooij NF, Koudelka-Hep M, Fähnrich KA, O’Sullivan CK, Guilbault GG (1999) Redox-cycling type electrochemiluminescence in aqueous medium. A new principle for the detection of proteins labeled with a ruthenium chelate. J Electroanal Chem 474(2):192–194. doi:10.1016/S0022-0728(99)00351-4

    Article  CAS  Google Scholar 

  10. Li H-J, Han S, Hu L-Z, Xu G-B (2009) Progress in Ru (bpy)(3)(2+) Electrogenerated Chemiluminescence. Chin J Anal Chem 37(11):1557–1565

    Article  CAS  Google Scholar 

  11. White HS, Bard AJ (1982) Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21-bpy)3 2+-S2O8 2− system in acetonitrile-water solutions. J Am Chem Soc 104(25):6891–6895. doi:10.1021/ja00389a001

    Article  CAS  Google Scholar 

  12. Miao W, Choi JP (2004) Electrogenerated Chemiluminescence. In: Marcel Dekker, New York, p 213

    Google Scholar 

  13. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. doi:10.1039/b923679c

    Article  CAS  Google Scholar 

  14. Ege D, Becker WG, Bard AJ (1984) Electrogenerated chemiluminescent determination of tris(2,2′-bipyridine) ruthenium ion \( \left( {{{\text{Ru}}\left( {\text{bpy}} \right)^{ 3}}_{ 2+ } } \right) \) at low levels. Anal Chem 56(13):2413-2417. doi:10.1021/ac00277a036

  15. Gorman BA, Francis PS, Barnett NW (2006) Tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence. Analyst 131(5):616–639. doi:10.1039/b518454a

    Article  CAS  Google Scholar 

  16. Hu L, Li H, Zhu S, Fan L, Shi L, Liu X, Xu G (2007) Cathodic electrochemiluminescence in aqueous solutions at bismuth electrodes. Chem Comm 0(40):4146–4148

    Google Scholar 

  17. Fahnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54(4):531–559. doi:10.1016/s0039-9140(01)00312-5

    Article  CAS  Google Scholar 

  18. Egashira N, Kumasako H, Ohga K (1990) Fabrication of a fiber optic based electrochemiluminescence sensor and its application to the determination of oxalate. Anal Sci 6:903–904

    Google Scholar 

  19. Kanoufi F, Bard AJ (1999) Electrogenerated Chemiluminescence. 65. An investigation of the oxidation of oxalate by tris(polypyridine) ruthenium complexes and the effect of the electrochemical steps on the emission intensity. J Phy Chem B 103(47):10469–10480. doi:10.1021/jp992368s

  20. Forster RJ, Hogan CF (2000) Electrochemiluminescent metallopolymer coatings: Combined light and current detection in flow injection analysis. Anal Chem 72(22):5576–5582. doi:10.1021/ac000605d

    Article  CAS  Google Scholar 

  21. Dennany L, O'Reilly EJ, Keyes TE, Forster RJ (2006) Electrochemiluminescent monolayers on metal oxide electrodes: Detection of amino acids. Electrochem Comm 8(10):1588–1594. doi:10.1016/j.elecom.2006.07.022

    Article  CAS  Google Scholar 

  22. Dennany L, Hogan CF, Keyes TE, Forster RJ (2006) Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers. Anal Chem 78(5):1412–1417. doi:10.1021/ac0513919

    Article  CAS  Google Scholar 

  23. Andersson A-M, Isovitsch R, Miranda D, Wadhwa S, Schmehl RH (2000) Electrogenerated chemiluminescence from Ru() bipyridylphosphonic acid complexes adsorbed to mesoporous TiO/ITO electrodes. Chem Comm 0(6):505–506

    Google Scholar 

  24. Bard AJ (2004) Electrogenerated Chemiluminescence. Taylor & Francis

    Google Scholar 

  25. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science (New York, NY) 296(5571):1293–1297. doi:10.1126/science.1069336

  26. Rubinstein I, Martin CR, Bard AJ (1983) Electrogenerated chemiluminescent determination of oxalate. Anal Chem 55(9):1580–1582. doi:10.1021/ac00260a030

    Article  CAS  Google Scholar 

  27. Li F, Cui H, Lin X-Q (2002) Potential-resolved electrochemiluminescence of Ru(bpy)32+/C2O42 system on gold electrode. Luminescence 17(2):117–122. doi:10.1002/bio.674

    Article  CAS  Google Scholar 

  28. Lu M-C, Whang C-W (2004) The role of direct oxalate oxidation in electrogenerated chemiluminescence of poly(4-vinylpyridine)-bound Ru(bpy)2Cl+/oxalate system on indium tin oxide electrodes. Anal Chim Acta 522(1):25–33. doi:10.1016/j.aca.2004.06.042

    Article  CAS  Google Scholar 

  29. Downey TM, Nieman TA (1992) Chemiluminescence detection using regenerable tris(2,2′-bipyridyl)ruthenium(II) immobilized in Nafion. Anal Chem 64(3):261–268. doi:10.1021/ac00027a005

    Article  CAS  Google Scholar 

  30. Knight AW, Greenway GM (1995) Indirect, ion-annihilation electrogenerated chemiluminescence and its application to the determination of aromatic tertiary-amines. Analyst 120(4):1077–1082. doi:10.1039/an9952001077

    Article  CAS  Google Scholar 

  31. Miao W, Choi J-P, Bard AJ (2002) Electrogenerated Chemiluminescence 69: The Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/Tri-n-propylamine (TPrA) system revisited. A new route involving tpra•+ cation radicals. J Am Chem Soc 124(48):14478–14485. doi:10.1021/ja027532v

    Google Scholar 

  32. Wightman RM, Forry SP, Maus R, Badocco D, Pastore P (2004) Rate-Determining Step in the Electrogenerated Chemiluminescence from Tertiary Amines with Tris(2,2′-bipyridyl)ruthenium(II). J Phy Chem B 108(50):19119–19125. doi:10.1021/jp036034l

    Article  CAS  Google Scholar 

  33. Pastore P, Badocco D, Zanon F (2006) Influence of nature, concentration and pH of buffer acid–base system on rate determining step of the electrochemiluminescence of Ru(bpy)32+ with tertiary aliphatic amines. Electrochim Acta 51(25):5394–5401. doi:10.1016/j.electacta.2006.02.009

    Article  CAS  Google Scholar 

  34. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036. doi:10.1021/cr020373d

    Article  CAS  Google Scholar 

  35. Factor B, Muegge B, Workman S, Bolton E, Bos J, Richter MM (2001) Surfactant chain length effects on the light emission of tris(2,2′-bipyridyl)ruthenium(II)/tripropylamine electrogenerated chemiluminescence. Anal Chem 73(19):4621–4624

    Article  CAS  Google Scholar 

  36. Zu YB, Bard AJ (2001) Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2′)bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal Chem 73(16):3960–3964. doi:10.1021/ac010230b

    Google Scholar 

  37. Li F, Zu Y (2004) Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2′-bipyridine)ruthenium(II)/tri-n-propylamine system: lower oxidation potential and higher emission intensity. Anal Chem 76(6):1768–1772. doi:10.1021/ac035181c

    Article  CAS  Google Scholar 

  38. Xu G, Pang H-L, Xu B, Dong S, Wong K-Y (2005) Enhancing the electrochemiluminescence of tris(2,2[prime or minute]-bipyridyl)ruthenium(ii) by ionic surfactants. Analyst 130(4):541–544

    Article  CAS  Google Scholar 

  39. Vinyard DJ, Richter MM (2007) Enhanced Electrogenerated Chemiluminescence in the Presence of Fluorinated Alcohols. Anal Chem 79(16):6404–6409. doi:10.1021/ac071028x

    Article  CAS  Google Scholar 

  40. Leland JK, Powell MJ (1990) Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using Tripropyl Amine. J Electrochem Soc 137(10):3127–3131. doi:10.1149/1.2086171

    Article  CAS  Google Scholar 

  41. Knight AW, Greenway GM (1996) Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review. Analyst 121(11):101R–106R

    Article  CAS  Google Scholar 

  42. Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(23):7109–7113. doi:10.1021/ac048782s

    Google Scholar 

  43. Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(18):5379–5386. doi:10.1021/ac0495236

    Article  CAS  Google Scholar 

  44. Fan F-RF, Cliffel D, Bard AJ (1998) Scanning Electrochemical Microscopy. 37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy. Anal Chem 70(14):2941–2948. doi:10.1021/ac980107t

    Google Scholar 

  45. Richter MM, Bard AJ, Kim W, Schmehl RH (1998) Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores. Anal Chem 70(2):310–318. doi:10.1021/ac970736n

  46. Andersson AM, Schmehl RH (2001) Molecular and supramolecular photochemistry 7: Optical sens switches

    Google Scholar 

  47. Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2,2′-bipyridyl) ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 378(1–3):1–41. doi:10.1016/s0003-2670(98)00545-5

    CAS  Google Scholar 

  48. Knight AW (1999) A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trac-Trends Anal Chem 18(1):47–62. doi:10.1016/s0165-9936(98)00086-7

    Article  CAS  Google Scholar 

  49. Lee WY (1997) Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim Acta 127(1–2):19–39. doi:10.1007/bf01243160

    Article  CAS  Google Scholar 

  50. Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1979) Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. J Am Chem Soc 101(17):4815–4824. doi:10.1021/ja00511a007

    Article  CAS  Google Scholar 

  51. Liu X, Shi L, Niu W, Li H, Xu G (2007) Environmentally friendly and highly sensitive ruthenium(ii) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed 46(3):421–424. doi:10.1002/anie.200603491

    Article  CAS  Google Scholar 

  52. Han S, Niu W, Li H, Hu L, Yuan Y, Xu G (2010) Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2′-bipyridyl)ruthenium(II) concentrations. Talanta 81(1–2):44–47. doi:10.1016/j.talanta.2009.11.037

    Article  CAS  Google Scholar 

  53. Pyati R, Richter MM (2007) ECL-Electrochemical luminescence. Ann Rep Sec “C” (Phy Chem) 103(0):12–78

    Google Scholar 

  54. Kankare J, Fäldén K, Kulmala S, Haapakka K (1992) Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminium disc electrodes. Anal Chim Acta 256(1):17–28. doi:10.1016/0003-2670(92)85320-6

    Article  CAS  Google Scholar 

  55. Kankare J, Haapakka K, Kulmala S, Näntö V, Eskola J, Takalo H (1992) Immunoassay by time-resolved electrogenerated luminescence. Anal Chim Acta 266(2):205–212. doi:10.1016/0003-2670(92)85044-7

    Article  CAS  Google Scholar 

  56. Gaillard F, Sung Y-E, Bard AJ (1999) Hot electron generation in aqueous solution at oxide-covered tantalum electrodes. Reduction of methylpyridinium and electrogenerated chemiluminescence of Ru(bpy)3 2+. J Phy Chem B 103(4):667–674. doi:10.1021/jp982821k

    Google Scholar 

  57. Nozik AJ (2001) Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Ann Rev Phy Chem 52(1):193–231. doi:10.1146/annurev.physchem.52.1.193

    Google Scholar 

  58. Verlet JRR (2008) Femtosecond spectroscopy of cluster anions: insights into condensed-phase phenomena from the gas-phase. Chem Soc Rev 37(3):505–517

    Article  CAS  Google Scholar 

  59. Kulmala S, Ala-Kleme T, Kulmala A, Papkovsky D, Loikas K (1998) Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes. Anal Chem 70(6):1112–1118. doi:10.1021/ac970954g

    Article  CAS  Google Scholar 

  60. Xu G, Dong S (2000) Electrochemiluminescence of the Ru(bpy)3 2+/S2O82 system in purely aqueous solution at carbon paste electrode. Electroanal 12(8):583–587. doi:10.1002/(SICI)1521-4109(200005)12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Parveen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Parveen, S., Aslam, M.S., Hu, L., Xu, G. (2013). Generation Pathways of Electrogenerated Chemiluminescence. In: Electrogenerated Chemiluminescence. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39555-0_2

Download citation

Publish with us

Policies and ethics