Skip to main content

Introduction

  • Chapter
  • First Online:
Electrogenerated Chemiluminescence

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1262 Accesses

Abstract

Chemiluminescence (CL) produced directly or indirectly as a result of electrochemical reactions is known as electrochemiluminescence (ECL), which is from the family of spectro-electrochemical techniques. For better understanding of ECL, various luminescence phenomena, particularly photoluminescence (PL), CL, and ECL, are briefly introduced. A brief ECL research background and theoretic basics of ECL are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. doi:10.1021/cr068083a

    Article  CAS  Google Scholar 

  2. Ludvik J (2011) DC-electrochemiluminescence (ECL with a coreactant)-principle and applications in organic chemistry. J Solid State Electrochem 15(10):2065–2081. doi:10.1007/s10008-011-1546-x

    Article  CAS  Google Scholar 

  3. Bard AJ (2004) Electrogenerated chemiluminescence. Taylor & Francis

    Google Scholar 

  4. Agbaria RA, Oldham PB, McCarroll M, McGown LB, Warner IM (2002) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 74(16):3952–3962. doi:10.1021/ac020299z

    Article  CAS  Google Scholar 

  5. Oldham PB, McCarroll ME, McGown LB, Warner IM (2000) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 72(12):197–210. doi:10.1021/a1000017p

    Article  CAS  Google Scholar 

  6. Kraayenhof R, Visser AJWG, Gerritsen HC (2002) Fluorescence spectroscopy, imaging, and probes: new tools in chemical, physical, and life sciences. Springer, Berlin

    Google Scholar 

  7. Lakowicz JR, Technology CoAiFS (2001) Advances in fluorescence sensing technology V: Fifth SPIE conference on advances in fluorescence sensing technology held as part of photonics West, 24–25 January 2001, San Jose, USA. SPIE, the international society for optical engineering

    Google Scholar 

  8. Holden M, Wang L (2008) Quantitative real-time pcr: fluorescent probe options and issues. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II, vol 6. Springer series on fluorescence, springer, Berlin Heidelberg, pp 489–508. doi:10.1007/4243_2008_046

    Google Scholar 

  9. Gamiz-Gracia L, Garcia-Campana AM, Huertas-Perez JF, Lara FJ (2009) Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis–a review. Anal Chim Acta 640(1–2):7–28. doi:10.1016/j.aca.2009.03.017

    Article  CAS  Google Scholar 

  10. Kuwana T, Epstein B, Seo ET (1963) Electrochemical generation of solution luminescence. J Phy Chem 67:2243–2244

    Google Scholar 

  11. Bowie AR, Sanders MG, Worsfold PJ (1996) Analytical applications of liquid phase chemiluminescence reactions–a review. J Biolumin Chemilumin 11(2):61–90. doi:10.1002/(sici)1099-1271(199603)11

    Article  CAS  Google Scholar 

  12. Knight AW (1999) A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trac-Trends Anal Chem 18(1):47–62. doi:10.1016/s0165-9936(98)00086-7

    Article  CAS  Google Scholar 

  13. Yin XB, Dong SJ, Wang E (2004) Analytical applications of the electrochemiluminescence of tris (2.2′-bipyridyl) ruthenium and its derivatives. Trac-Trends in Anal Chem 23(6):432–441. doi:10.1016/s0165-9936(04)00603-x

  14. Wei H, Wang E (2011) Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review. Lumin 26(2):77–85. doi:10.1002/bio.1279

    Article  CAS  Google Scholar 

  15. Wilson R, Clavering C, Hutchinson A (2003) Electrochemiluminescence enzyme immunoassays for tnt and pentaerythritol tetranitrate. Anal Chem 75(16):4244–4249. doi:10.1021/ac034163s

    Article  CAS  Google Scholar 

  16. Chen X-m, Su B-y, Song X-h, Chen Q-a, Chen X, Wang X-r (2011) Recent advances in electrochemiluminescent enzyme biosensors. Trac-Trends Anal Chem 30(5):665–676. doi:10.1016/j.trac.2010.12.004

  17. Knight AW, Greenway GM (1996) Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction: a review. Analyst 121(11):101R–106R

    Article  CAS  Google Scholar 

  18. Lee WY (1997) Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim Acta 127(1–2):19–39. doi:10.1007/bf01243160

    Article  CAS  Google Scholar 

  19. Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 378(1–3):1–41. doi:10.1016/s0003-2670(98)00545-5

    CAS  Google Scholar 

  20. Rubinstein I, Martin CR, Bard AJ (1983) Electrogenerated chemiluminescent determination of oxalate. Anal Chem 55(9):1580–1582. doi:10.1021/ac00260a030

    Article  CAS  Google Scholar 

  21. Noffsinger JB, Danielson ND (1987) Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2′-bipyridine)ruthenium(III). Anal Chem 59(6):865–868. doi:10.1021/ac00133a017

    Article  CAS  Google Scholar 

  22. Brune SN, Bobbitt DR (1991) Effect of pH on the reaction of tris(2,2′-bipyridyl)ruthenium(III) with amino-acids: implications for their detection. Talanta 38(4):419–424. doi:10.1016/0039-9140(91)80080-J

    Article  CAS  Google Scholar 

  23. Brune SN, Bobbitt DR (1992) Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2′-bipyridyl)ruthenium(III) with amino acids. Anal Chem 64(2):166–170

    Article  CAS  Google Scholar 

  24. Downey TM, Nieman TA (1992) Chemiluminescence detection using regenerable tris(2,2′-bipyridyl)ruthenium(II) immobilized in Nafion. Anal Chem 64(3):261–268. doi:10.1021/ac00027a005

    Article  CAS  Google Scholar 

  25. Lee W-Y, Nieman TA (1995) Evaluation of use of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent for quantitation in flowing streams. Anal Chem 67(11):1789–1796. doi:10.1021/ac00107a007

    Article  CAS  Google Scholar 

  26. Martin AF, Nieman TA (1993) Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl) ruthenium(II) chemiluminescent sensor. Anal Chim Acta 281(3):475–481. doi:10.1016/0003-2670(93)85005-5

    Article  CAS  Google Scholar 

  27. Dennany L, Forster RJ, Rusling JF (2003) Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of dna in ultrathin films. J Am Chem Soc 125(17):5213–5218. doi:10.1021/ja0296529

    Article  CAS  Google Scholar 

  28. Zorzi M, Pastore P, Magno F (2000) a single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy) 2+3 in aqueous solution. Anal Chem 72(20):4934–4939. doi:10.1021/ac991222m

    Article  CAS  Google Scholar 

  29. Greenway GM, Nelstrop LJ, Port SN (2000) Tris(2,2-bipyridyl)ruthenium (II) chemiluminescence in a microflow injection system for codeine determination. Anal Chim Acta 405(1–2):43–50. doi:10.1016/S0003-2670(99)00691-1

    Article  CAS  Google Scholar 

  30. Park Y-J, Lee DW, Lee W-Y (2002) Determination of β-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Anal Chim Acta 471(1):51–59. doi:10.1016/S0003-2670(02)00932-7

    Article  CAS  Google Scholar 

  31. Li F, Cui H, Lin X-Q (2002) Determination of adrenaline by using inhibited Ru(bpy) 2+3 electrochemiluminescence. Anal Chim Acta 471(2):187–194. doi:10.1016/S0003-2670(02)00930-3

    Article  CAS  Google Scholar 

  32. Bard AJ, Debad JD, Leland JK, Sigal GB, Wilbur JL, Wohlsatdter JN (2000) Encyclopedia of analytical chemistry: applications, theory and instrumentation, vol 11. Wiley, New York

    Google Scholar 

  33. Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated Chemiluminescence. Ann Rev Anal Chem 2:359–385. doi:10.1146/annurev-anchem-060908-155305

    Article  CAS  Google Scholar 

  34. Swanick KN, Dodd DW, Price JT, Brazeau AL, Jones ND, Hudson RHE, Ding Z (2011) Electrogenerated chemiluminescence of triazole-modified deoxycytidine analogues in N-dimethylformamide. Phy Chem Chem Phy 13(38):17405–17412

    Article  CAS  Google Scholar 

  35. Santhanam KSV, Bard AJ (1965) J Am Chem Soc 87:139–140

    Article  CAS  Google Scholar 

  36. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. doi:10.1039/b923679c

    Article  CAS  Google Scholar 

  37. Bard AJ, Rubinstein I (2003) Electroanalytical Chemistry: A series of advances. vol 22; v. 2004. Taylor & Francis

    Google Scholar 

  38. Adam W, Cilento G (1982) Chemical and biological generation of excited states. Academic Press

    Google Scholar 

  39. Aikens DA (1983) Electrochemical methods, fundamentals and applications. J Chem Edu 60(1):A25. doi:10.1021/ed060pA25.1

    Article  Google Scholar 

  40. Knight AW, Greenway GM (1994) Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence: review. Analyst 119(5):879–890. doi:10.1039/an9941900879

    Article  CAS  Google Scholar 

  41. Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 378(1–3):1–41. doi:10.1016/S0003-2670(98)00545-5

    CAS  Google Scholar 

  42. Kukoba AV, Bykh AI, Svir IB (2000) Analytical applications of electrochemiluminescence: an overview. Fresenius J Anal Chem 368(5):439–442. doi:10.1007/s002160000548

    Article  CAS  Google Scholar 

  43. Mitschke U, Bauerle P (2000) The electroluminescence of organic materials. J Mat Chem 10(7):1471–1507

    Article  CAS  Google Scholar 

  44. Garcia-Campana AM (2001) Chemiluminescence in analytical chemistry. Taylor & Francis

    Google Scholar 

  45. Isacsson U, Wettermark G (1974) Chemiluminescence in analytical chemistry. Anal Chim Acta 68(2):339–362. doi:10.1016/S0003-2670(01)82590-3

    Article  CAS  Google Scholar 

  46. Andersson AM, Schmehl RH (2001) Molecular and supramolecular photochemistry 7: Optical Sensors and Switches

    Google Scholar 

  47. Fahnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54(4):531–559. doi:10.1016/s0039-9140(01)00312-5

    Article  CAS  Google Scholar 

  48. Ligler FS, Taitt CR (2002) Optical biosensors: present and future. Elsevier Science

    Google Scholar 

  49. Kulmala S, Suomi J (2003) Current status of modern analytical luminescence methods. Anal Chim Acta 500(1–2):21–69. doi:10.1016/j.aca.2003.09.004

    Article  CAS  Google Scholar 

  50. Knight AW (1999) A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC, Trends Anal Chem 18(1):47–62. doi:10.1016/S0165-9936(98)00086-7

    Article  CAS  Google Scholar 

  51. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036. doi:10.1021/cr020373d

    Article  CAS  Google Scholar 

  52. Gorman BA, Francis PS, Barnett NW (2006) Tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence. Analyst 131(5):616–639. doi:10.1039/b518454a

    Article  CAS  Google Scholar 

  53. Pyati R, Richter MM (2007) ECL-Electrochemical luminescence. Ann Rep Sec “C” (Phy Chem) 103(0):12–78

    Google Scholar 

  54. Maricle DL, Rauhut MM (1972) US Patent

    Google Scholar 

  55. Chandross EA, Visco RE (1967) 3,319,132, May 9

    Google Scholar 

  56. Dufford RT, Nightingale D, Gaddum LW (1927) Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena. J Am Chem Soc 49(8):1858–1864. doi:10.1021/ja01407a002

    Article  CAS  Google Scholar 

  57. Harvey N (1928) Luminescence during electrolysis. J Phy Chem 33(10):1456–1459. doi:10.1021/j150304a002

    Article  Google Scholar 

  58. Hercules DM (1964) Chemiluminescence resulting from electrochemically generated species. Science (New York, NY) 145 (3634):808–809. doi:10.1126/science.145.3634.808

  59. Visco RE, Chandross EA (1964) Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc 86(23):5350–5351

    Article  CAS  Google Scholar 

  60. Faulkner LR, Bard AJ Electroanalytical Chemistry, vol 10. Marcel Dekker, New York

    Google Scholar 

  61. Weller A, Zachariasse K (1967) Chemiluminescence from chemical oxidation of aromatic anions. J Chem Phy 46(12):4984–4985

    Article  CAS  Google Scholar 

  62. Faulkner LR, Tachikawa H, Bard AJ (1972) Electrogenerated chemiluminescence. VII. Influence of an external magnetic field on luminescence intensity. J Am Chem Soc 94(3):691–699. doi:10.1021/ja00758a001

    Article  CAS  Google Scholar 

  63. Powe AM, Das S, Lowry M, El-Zahab B, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Li M, Aljarrah M, Neal S, Warner IM (2010) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 82(12):4865–4894. doi:10.1021/ac101131p

    Article  CAS  Google Scholar 

  64. Aitken RJ, Baker MA, O’Bryan M (2004) Andrology lab corner: shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Andr 25(4):455–465. doi:10.1002/j.1939-4640.2004.tb02815.x

    CAS  Google Scholar 

  65. Butkovskaya NI, Setser DW (2003) Infrared chemiluminescence from water-forming reactions: characterization of dynamics and mechanisms. Int Rev Phy Chem 22(1):1–72. doi:10.1080/0144235021000033381

    Article  CAS  Google Scholar 

  66. Gaffney JS, Anl A IL, Marley NA (2002) Historical overview of the development of chemiluminescence detection and its application to air pollutants. In: Atmospheric chemistry: urban, regional and global-scale impacts of air pollutants, Boston, MA. American Meteorological Society, pp 1–6

    Google Scholar 

  67. Garcia-Campana A, Ugent WB, Cuadros-Rodriguez L, Barrero F, Bosque-Sendra J, Gamiz-Gracia L (2002) Curr Org Chem 6(1):1–20

    Article  CAS  Google Scholar 

  68. Jacobson K, Eriksson P, Reitberger T, Stenberg B (2004) Chemiluminescence as a tool for polyolefin oxidation studies. In: Albertsson A-C (ed) Long Term Properties of Polyolefins, vol 169. Advances in Polymer Science. Springer Berlin Heidelberg, pp 151–176. doi:10.1007/b13522

  69. Kuyper C, Milofsky R (2001) Recent developments in chemiluminescence and photochemical reaction detection for capillary electrophoresis. TrAC Trends Anal Chem 20(5):232–240. doi:10.1016/S0165-9936(01)00066-8

  70. Zhan W, Alvarez J, Sun L, Crooks RM (2003) A multichannel microfluidic sensor that detects anodic redox reactions indirectly using anodic electrogenerated chemiluminescence. Anal Chem 75(6):1233–1238

    Article  CAS  Google Scholar 

  71. Liu Y-M, Cheng J-K (2002) Ultrasensitive chemiluminescence detection in capillary electrophoresis. J Chromatogr A 959(1–2):1–13. doi:10.1016/S0021-9673(02)00434-X

    CAS  Google Scholar 

  72. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasini P (2003) Peer reviewed: analytical bioluminescence and chemiluminescence. Anal Chem 75 (21):462 A–470 A. doi:10.1021/ac031398v

  73. Roda A, Guardigli M, Pasini P, Mirasoli M (2003) Bioluminescence and chemiluminescence in drug screening. Anal Bioanal Chem 377(5):826–833. doi:10.1007/s00216-003-2096-6

    Article  CAS  Google Scholar 

  74. Stott RA (2002) Enhanced chemiluminescence immunoassay, pp 1089–1096

    Google Scholar 

  75. Yamaguchi M, Yoshida H, Nohta H (2002) Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis. J Chromatogr A 950(1–2):1–19

    CAS  Google Scholar 

  76. Harvey EN (1952) Bioluminescence. Academic Press

    Google Scholar 

  77. Qian J, Zhang C, Cao X, Liu S (2010) Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem 82(15):6422–6429. doi:10.1021/ac100558t

    Article  CAS  Google Scholar 

  78. Wei H, Liu J, Zhou L, Li J, Jiang X, Kang J, Yang X, Dong S, Wang E (2008) Ru(bpy) 2+3 -doped silica nanoparticles within layer-by-layer biomolecular coatings and their application as a biocompatible electrochemiluminescent tag material. Chem Eur J 14(12):3687–3693. doi:10.1002/chem.200701518

    Article  CAS  Google Scholar 

  79. Xu XHN, Jeffers RB, Gao JS, Logan B (2001) Novel solution-phase immunoassays for molecular analysis of tumor markers. Analyst 126(8):1285–1292. doi:10.1039/b104180k

    Article  CAS  Google Scholar 

  80. Yuan Y, Li H, Han S, Hu L, Parveen S, Xu G (2011) Vitamin C derivatives as new coreactants for tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Anal Chim Acta 701(2):169–173. doi:10.1016/j.aca.2011.06.051

    Article  CAS  Google Scholar 

  81. Arai K, Takahashi K, Kusu F (1999) An electrochemiluminescence flow through-cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol. Anal Chem 71(11):2237–2240. doi:10.1021/ac9810361

    Article  CAS  Google Scholar 

  82. Jie G, Liu P, Wang L, Zhang S (2010) Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem Comm 12(1):22–26. doi:10.1016/j.elecom.2009.10.027

    Article  CAS  Google Scholar 

  83. Parveen S, Zhang W, Yuan Y, Hu L, Shah Gilani MRH, Rehman Au, Xu G (2013) Electrogenerated chemiluminescence of/2-(dibutylamino) ethanol system. J Electroanal Chem 688:45–48. doi:10.1016/j.jelechem.2012.05.014

    Article  CAS  Google Scholar 

  84. Marquette CA, Blum LJ (1998) Electrochemiluminescence of luminol for 2,4-D optical immunosensing in a flow injection analysis system. Sens Actua B-Chem 51(1–3):100–106. doi:10.1016/s0925-4005(98)00175-0

    Article  CAS  Google Scholar 

  85. Yuan Y, Han S, Hu L, Parveen S, Xu G (2012) Coreactants of tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence. Electrochim Acta 82:484–492. doi:10.1016/j.electacta.2012.03.156

    Article  CAS  Google Scholar 

  86. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10(16):2093–2100. doi:10.1039/c003994b

    Article  CAS  Google Scholar 

  87. Han S, Zhu S, Liu Z, Hu L, Parveen S, Xu G (2012) Oligonucleotide-stabilized fluorescent silver nanoclusters for turn-on detection of melamine. Biosens Bioelectron 36(1):267–270. doi:10.1016/j.bios.2012.04.028

    Article  CAS  Google Scholar 

  88. Han B, Du Y, Wang E (2008) Simultaneous determination of pethidine and methadone by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Microchem J 89(2):137–141. doi:10.1016/j.microc.2008.01.007

    Article  CAS  Google Scholar 

  89. Yuan Y, Li H, Han S, Hu L, Parveen S, Cai H, Xu G (2012) Immobilization of tris(1,10-phenanthroline)ruthenium with graphene oxide for electrochemiluminescent analysis. Anal Chim Acta 720:38–42. doi:10.1016/j.aca.2012.01.023

    Article  CAS  Google Scholar 

  90. Bistolfi F (2000) Red radioluminescence and radiochemiluminescence: premises for a photodynamic tumour therapy with X-rays and haematoporphyrin derivatives. A working hypothesis. Panminerva medica 42(1):69–75

    CAS  Google Scholar 

  91. Papadopoulos K, Lignos J, Stamatakis M, Dimotikali D, Nikokavouras J (1998) Radiochemiluminescence of acridones and alkyl acridities. J Photochem Photobio A: Chem 115(2):137–142. doi:10.1016/S1010-6030(98)00236-6

    Article  CAS  Google Scholar 

  92. Papadopoulos K, Triantis T, Dimotikali D, Nikokavouras J (2000) Radiochemiluminescence of carboxyquinolines. J Photochem Photobio A: Chem 131(1–3):55–60. doi:10.1016/S1010-6030(99)00243-9

    Article  CAS  Google Scholar 

  93. Håkansson M, Jiang Q, Spehar A-M, Suomi J, Kulmala S (2006) Extrinsic lyoluminescence of aluminum induced by lanthanide chelates in alkaline aqueous solution. J Lumin 118(2):272–282. doi:10.1016/j.jlumin.2005.09.012

    Article  Google Scholar 

  94. Ashokkumar M, Grieser F (2004) Single bubble sonoluminescence–a chemist’s overview. Chemphyschem: Eur j chem phy phy chem 5 (4):439–448. doi:10.1002/cphc.200300926

  95. Arakeri VH (2003) Sonoluminescence and bubble fusion. Curr Sci 85(7):911–916

    CAS  Google Scholar 

  96. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phy 74(2):425–484

    Article  CAS  Google Scholar 

  97. Hammer D, Frommhold L (2001) Sonoluminescence: how bubbles glow. J Mod Opt 48(2):239–277. doi:10.1080/09500340108232457

    CAS  Google Scholar 

  98. Prevenslik TV (2003) The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence. Ultrason 41(4):313–317. doi:10.1016/S0041-624X(02)00458-4

    Article  CAS  Google Scholar 

  99. Marquette C, Blum L (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390(1):155–168. doi:10.1007/s00216-007-1631-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Parveen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Parveen, S., Aslam, M.S., Hu, L., Xu, G. (2013). Introduction. In: Electrogenerated Chemiluminescence. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39555-0_1

Download citation

Publish with us

Policies and ethics