Reflection on the Popularity of MapReduce and Observation of Its Position in a Unified Big Data Platform

  • Xiongpai Qin
  • Biao Qin
  • Xiaoyong Du
  • Shan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7901)


In recent years MapReduce has risen to be the de-facto tool for big data processing. MapReduce is a disruptive innovation. It has changed the landscape of database market, the landscape of technologies, as well as the landscape of saying power. The article will give a reflection on the popularity of the technique and some observations of its position in a unified big data platform.


MapReduce Popularity Reflection Unified Big Data Platform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Symposium on Operating Systems Design and Implementation (OSDI), pp. 137–150. USENIX Association, San Francisco (2004)Google Scholar
  2. 2.
    Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with MapReduce: a survey. SIGMOD Record 40(4), 11–20 (2011)CrossRefGoogle Scholar
  3. 3.
    Sakr, S., Liu, A., Fayoumi, A.G.: The Family of MapReduce and Large Scale Data Processing Systems (2013),
  4. 4.
    Foley, M.J.: Microsoft drops Dryad; puts its big-data bets on Hadoop (2011),
  5. 5.
    Kraska, T.: Finding the Needle in the Big Data Systems Haystack. IEEE Internet Computing 17(1), 84–86 (2013)CrossRefGoogle Scholar
  6. 6.
    Winckler, M.: Apache Hadoop takes top prize at Media Guardian Innovation Awards (2011),
  7. 7.
    Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: Interactive Analysis of WebScale Datasets. Proceedings of the VLDB Endowment 3(1-2), 330–339 (2010)Google Scholar
  8. 8.
    He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems. In: International Conference on Data Engineering (ICDE), pp. 1199–1208. IEEE Computer Society, Hannover (2011)Google Scholar
  9. 9.
    Ferguson, M.: Architecting a Big Data Platform for Analytics. A Whitepaper Prepared for IBM (2012)Google Scholar
  10. 10.
    Oracle: Oracle: Big Data for the Enterprise. Oracle White Paper (2012) Google Scholar
  11. 11.
    Dewitt, D.: Polybase: What, Why, How. SQL PASS Summit Keynote (2012)Google Scholar
  12. 12.
    EMC: Unified Analytics Platform (2013),
  13. 13.
    TeraData: TeraData Unified Data Architecture. TeraData Whitepaper (2012)Google Scholar
  14. 14.
    Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A practical approach to self describing, polymorphic, and parallelizable user defined functions. Proceedings of the VLDB Endowment 2(2), 1402–1413 (2009)Google Scholar
  15. 15.
    Gates, A.: The Stinger Initiative: Making Apache Hive 100 Times Faster (2013),
  16. 16.
    Incubator Wiki: Drill Proposal (2013),
  17. 17.
    Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proceedings of the VLDB Endowment 2(1), 922–933 (2009)Google Scholar
  18. 18.
    Platfora: Platfora Homepage (2013),
  19. 19.
    Murthy, A.C.: The Next Generation of Apache Hadoop MapReduce (2011),
  20. 20.
    BUSINESS WIRE: HortonWorks to Deliver Next-Generation of Apache Hadoop (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiongpai Qin
    • 1
    • 2
  • Biao Qin
    • 1
    • 2
  • Xiaoyong Du
    • 1
    • 2
  • Shan Wang
    • 1
    • 2
  1. 1.MOE Key Lab of Data Engineering and Knowledge EngineeringBeijingChina
  2. 2.School of InformationRenmin University of ChinaBeijingChina

Personalised recommendations