A Hybrid Approach for Privacy Preservation in Location Based Queries

  • Zhengang Wu
  • Liangwen Yu
  • Jiawei Zhu
  • Huiping Sun
  • Zhi Guan
  • Zhong Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7901)


With rapidly popular location-aware applications, location privacy becomes an emerging issue. This paper studies how to protect the two-fold privacy for both client-side and server-side in location-based queries. This technique is a significant component in privacy-friendly Location Based Services (LBS). Participants protect their own privacy. The LBS server protects against excessive disclose of location records in its Points of Interest (POIs) database while the mobile user protects his exact location by the cloaking technique. The proposed hybrid approach can achieve the challenging goal. Our solution integrates the cloaking technique with a cryptographic protocol, Private Set Intersection (PSI). In addition, this solution is secure in malicious model and also practical.


Location privacy Location Based Services privacy-preserving protocols Private Set Intersection Homomorphic Encryption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Privacy-preserving and content-protecting location based queries. In: ICDE, pp. 44–53 (2012)Google Scholar
  2. 2.
    Jian, Y., Chen, S., Zhang, Z., Zhang, L.: Protecting receiver-location privacy in wireless sensor networks. In: IEEE INFOCOM, pp. 1955–1963 (2007)Google Scholar
  3. 3.
    Huang, Y., Vishwanathan, R.: Privacy preserving group nearest neighbour queries in location-based services using cryptographic techniques. In: IEEE GLOBECOM, pp. 1–5 (2010)Google Scholar
  4. 4.
    Li, Y., Ren, J.: Source-location privacy through dynamic routing in wireless sensor networks. In: IEEE INFOCOM, pp. 2660–2668 (2010)Google Scholar
  5. 5.
    Pingley, A., Zhang, N., Fu, X., Choi, H.A., Subramaniam, S., Zhao, W.: Protection of query privacy for continuous location based services. In: IEEE INFOCOM, pp. 1710–1718 (2011)Google Scholar
  6. 6.
    Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong location privacy. PVLDB 3(1), 619–629 (2010)Google Scholar
  7. 7.
    Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: Three protocols for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 62–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Williams, P., Sion, R.: Usable pir. In: NDSS. The Internet Society (2008)Google Scholar
  9. 9.
    Ghinita, G., Kalnis, P., Kantarcioglu, M., Bertino, E.: Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection. GeoInformatica 15(4), 699–726 (2011)CrossRefGoogle Scholar
  10. 10.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: A privacy-aware location based database server. In: Chirkova, R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) IEEE ICDE, pp. 1499–1500 (2007)Google Scholar
  12. 12.
    Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for location services without compromising privacy. In: Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 763–774. ACM (2006)Google Scholar
  13. 13.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng, 1719–1733 (2007)Google Scholar
  14. 14.
    Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Mendelzon, A.O., Paredaens, J. (eds.) PODS, p. 188. ACM Press (1998)Google Scholar
  15. 15.
    Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern privacy and correctness on untrusted storage. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications Security, pp. 139–148. ACM (2008)Google Scholar
  16. 16.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G.: Differentially private histogram publication. In: ICDE, pp. 32–43 (2012)Google Scholar
  19. 19.
    Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially private histograms through consistency. PVLDB 3(1), 1021–1032 (2010)Google Scholar
  20. 20.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive ot and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptology 25(3), 383–433 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhengang Wu
    • 1
  • Liangwen Yu
    • 1
  • Jiawei Zhu
    • 1
  • Huiping Sun
    • 1
  • Zhi Guan
    • 1
  • Zhong Chen
    • 1
  1. 1.Institute of Software, EECS, MoE Key Lab of High Confidence Software Technologies (PKU), MoE Key Lab of Network and Software Security Assurance (PKU)Peking UniversityBeijingChina

Personalised recommendations