Advertisement

Minimum-Delay POIs Coverage under Obstacle-Constraint in Emergency Management

  • Wenping Chen
  • Si Chen
  • Deying Li
Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7901)

Abstract

Applying wireless sensor network to emergency management is helpful to predict latent disaster and prevent or lessen the harm. In some cases of emergency management, it is not necessary to monitor the entire area all the time, and only need to employ a few of mobile sensors to monitor a number of Points of Interest (POIs) periodically. Due to the cost restriction, the number of mobile sensors is limited. Moreover, there may be some obstacles in the monitoring field, which makes mobile sensor cannot reach some POIs directly. In this paper, we address the Minimum-Delay POIs Coverage problem in Emergency Management, which is how to schedule the limited number of mobile sensors to monitor the POIs in a region with obstacles such that the POIs coverage delay is minimized. Firstly, we calculate the shortest distance between any two POIs in the monitoring field with obstacles to construct a weight complete graph. Secondly, we propose an algorithm named Obstacle − TSP − S to address the minimum-delay POIs coverage problem. By the comprehensive simulations, we evaluate the performance of the proposed algorithm. The simulation results show the efficiency of our algorithm.

Keywords

emergency management mobile wireless sensor networks obstacle cost-constraint POIs coverage minimal delay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer (2000)Google Scholar
  2. 2.
    Li, M., Cheng, W., Liu, K., He, Y., Liu, Y., Liao, X.: Sweep Coverage with Mobile Sensors. IEEE Trans. Mobile Computing 10(11), 1534–1545 (2011)CrossRefGoogle Scholar
  3. 3.
    Du, J., Li, Y., Liu, H., Sha, K.: On Sweep Coverage with Minimum Mobile Sensors. In: InternationalConference on Parallel and Distributed Systems, pp. 283–290 (2010)Google Scholar
  4. 4.
    Cardei, M., Du, D.Z.: Improving Wireless Sensor Network Lifetime through Power Aware Organization. ACM Wireless Networks 11(3), 333–340 (2005)CrossRefGoogle Scholar
  5. 5.
    Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-Efficient Target Coverage in Wireless Sensor Networks. In: IEEE INFOCOM, pp. 1976–1984 (2005)Google Scholar
  6. 6.
    Liu, H., Chen, W., Ma, H., Li, D.: Energy-Efficient Algorithm for the Target Q-coverage Problem in Wireless Sensor Networks. In: Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds.) WASA 2010. LNCS, vol. 6221, pp. 21–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, H., Wan, P., Yi, C., Jia, X., Makki, S., Niki, P.: Maximal Lifetime Scheduling in Sensor Surveillance Networks. In: IEEE INFOCOM, pp. 2482–2491 (2005)Google Scholar
  8. 8.
    Chaudhary, M., Pujari, A.K.: Q-Coverage Problem in Wireless Sensor Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 325–330. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Cardei, M., MacCallum, D., Cheng, X., Min, M., Jia, X., Li, D., Du, D.Z.: Wireless Sensor Networks with Energy Efficient Organization. Journal of Interconnection Networks 3(3-4), 213–229 (2002)CrossRefGoogle Scholar
  10. 10.
    Slijepcevic, S., Potkonjak, M.: Power Efficient Organization of Wireless Sensor Networks. In: IEEE ICC, pp. 472–476 (2001)Google Scholar
  11. 11.
    Bai, X., Xuan, D., Yun, Z., Lai, T.H., Jia, W.: Complete Optimal Deployment Patterns for Full-Coverage and K-Connectivity (k ≤ 6) Wireless Sensor Networks. In: Proc. 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 401–410 (2008)Google Scholar
  12. 12.
    Kumar, S., Lai, T.H., Balogh, J.: On K-Coverage in a Mostly Sleeping Sensor Network. In: Proc. 10th Annual International Conference on Mobile Computing and Networking, pp. 144–158 (2004)Google Scholar
  13. 13.
    Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated Coverage and Connectivity Configuration in Wireless Sensor Networks. In: Proc. ACM SenSys, pp. 28–39 (2003)Google Scholar
  14. 14.
    Liu, B., Brass, P., Dousse, O.: Mobility Improves Coverage of Sensor Networks. In: Proc. ACM MobiHoc, pp. 300–308 (2005)Google Scholar
  15. 15.
    Zhou, Z., Das, S., Gupta, H.: Connected K-Coverage Problem in Sensor Networks. In: International Conference on Computer Communication Networks, pp. 373–378 (2004)Google Scholar
  16. 16.
    Hefeeda, M., Bagheri, M.: Randomized k-Coverage Algorithms For Dense Sensor Networks. In: IEEE INFOCOM, pp. 2376–2380 (2007)Google Scholar
  17. 17.
    Wang, Y., Cao, G.: On Full-View Coverage in Camera Sensor Networks. In: IEEE INFOCOM, pp. 1781–1789 (2011)Google Scholar
  18. 18.
    Bai, X., Kumar, S., Yun, Z., Xuan, D., Lai, T.H.: Deploying Wireless Sensors to Achieve Both Coverage and Connectivity. In: Proc. ACM MobiHoc, pp. 131–142 (2006)Google Scholar
  19. 19.
    Kumar, S., Lai, T.H., Arora, A.: Barrier Coverage with Wireless Sensors. In: Proc. ACM MobiCom, pp. 284–298 (2005)Google Scholar
  20. 20.
    Chen, A., Kumar, S., Lai, T.H.: Designing Localized Algorithms for Barrier Coverage. In: Proc. ACM MobiCom, pp. 63–74 (2007)Google Scholar
  21. 21.
    Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable Density Estimates for Coverage and Connectivity in Thin Strips of Finite Length. In: Proc. ACM MobiCom, pp. 75–86 (2007)Google Scholar
  22. 22.
    Yang, H., Li, D., Zhu, Q., Chen, W., Hong, Y.: Minimum Energy Cost k-barrier Coverage in Wireless Sensor Networks. In: Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds.) WASA 2010. LNCS, vol. 6221, pp. 80–89. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Ssu, K.F., Wang, W.T., Wu, F.K., Wu, T.T.: K-Barrier Coverage with a Directional Sensing Model. International Journal on Smart Sensing and Intelligent Systems 2(1), 75–93 (2009)Google Scholar
  24. 24.
    Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier Coverage of Line-Based Deployed Wireless Sensor Networks. In: IEEE INFOCOM, pp. 127–135 (2009)Google Scholar
  25. 25.
    Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless sensor networks. In: ACM MobiHoc, pp. 411–420 (2008)Google Scholar
  26. 26.
    He, S., Chen, J., Li, X.: Cost-Effective Barrier Coverage by Mobile Sensor Networks. In: IEEE INFOCOM, pp. 819–827 (2012)Google Scholar
  27. 27.
    Wang, W., Srinivasan, V., Chua, K.C.: Trade-Offs Between Mobility and Density for Coverage in Wireless Sensor Networks. In: Proc. ACM MobiCom, pp. 39–50 (2007)Google Scholar
  28. 28.
    Wang, D., Liu, J., Zhang, Q.: Probabilistic Field Coverage using a Hybrid Network of Static and Mobile Sensors. In: Proc. IEEE IWQoS, pp. 56–64 (2007)Google Scholar
  29. 29.
    Ekici, E., Gu, Y., Bodag, D.: Mobility-Based Communication in Wireless Sensor Networks. IEEE Communications Magazine 44(7), 56–62 (2006)Google Scholar
  30. 30.
    Chellappan, S., Gu, W., Bai, X., Xuan, D., Ma, B., Zhang, K.: Deploying Wireless Sensor Networks under Limited Mobility Constraints. IEEE Trans. Mobile Computing 6(10), 1142–1157 (2007)CrossRefGoogle Scholar
  31. 31.
    Du, D.Z., Ko, K.-I., Hu, X.D.: Design and Analysis of Approximation Algorithms. Springer (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenping Chen
    • 1
  • Si Chen
    • 1
  • Deying Li
    • 1
  1. 1.School of InformationRenmin University of ChinaBeijingP.R. China

Personalised recommendations