Skip to main content

Basophil, Eosinophil, and Neutrophil Functions in the Elderly

  • Chapter
  • First Online:

Abstract

Human granulocytes are classically characterized by their capacity to act as phagocytes, degranulators secreting preformed lytic enzymes from their granules, and produce reactive oxygen species (ROS) to destroy bacteria, parasites, and fungi. Basophils and eosinophils are mainly involved in the defense against parasites or allergic reactions, but also they play important roles in antigen presentation, immune memory response, and T helper 2 cell (Th2) differentiation. Like basophils and eosinophils, neutrophils and their function have been underestimated in research for a long time. Thus, neutrophils have been categorized as short-lived phagocytic cells of the innate immune system with limited ability for biosynthetic activity and being the first cells appearing in inflamed locations/acute inflammation to fight extracellular pathogens. In the last two decades, this limited view was challenged by the demonstration that neutrophils survive much longer than first suggested and can be induced to de novo express genes encoding key inflammatory mediators, including complement components, Fc receptors, chemokines, and cytokines. Immune cells of the innate and the adaptive system are uniformly compromised by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. Whereas the effects of aging on T and B cells of the adaptive immune system are well documented, studies related to age-related defects of polymorphonuclear neutrophils (PMN), basophils, and eosinophils are restricted. That is surprising since genetically induced immune defects of, e.g., neutrophils increase susceptibility to severe infections and mortality. Furthermore, during aging there is a shift from the adaptive immune to the innate system which raises the importance of these cells. There is consensus about unchanged neutrophil numbers in the circulation throughout aging; apart from this, reports about changes in tissue infiltration, phagocytosis, and burst capabilities of neutrophils from aged donors are inconsistent. Additionally, there are many different results between in vivo and in vitro studies as well as between studies investigating murine and human neutrophils. The majority of the reported discrepancies in neutrophils during aging function originate from damaged signaling pathways and studies where the SENIEUR protocol has not been used. Research in neutrophils, in addition, would build the basis for drug development in preventing and/or fighting age-related diseases. Research on human basophils and eosinophils and their function during aging is rare despite the fact that these cells are important in defense against parasites and play an important role in allergy, asthma, and autoimmune diseases. This chapter highlights the age-related changes of the immune system, focusing on new insights into neutrophil, basophil, and eosinophil immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamko DJ, Odemuyiwa SO, Vethanayagam D et al (2005) The rise of the phoenix: the expanding role of the eosinophil in health and disease. Allergy 60:13–22

    PubMed  CAS  Google Scholar 

  • Agrawal A, Gupta S (2011) Impact of aging on dendritic cell functions in humans. Ageing Res Rev 10:336–345

    PubMed  CAS  Google Scholar 

  • Agrawal A, Agrawal S, Gupta S (2007) Dendritic cells in human aging. Exp Gerontol 42:421–426

    PubMed  CAS  Google Scholar 

  • Alonso-Fernandez P, Puerto M, Mate I et al (2008) Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc 56:2244–2251

    PubMed  Google Scholar 

  • Altstaedt J, Kirchner H, Rink L (1996) Cytokine production of neutrophils is limited to interleukin-8. Immunology 89:563–568

    PubMed  CAS  Google Scholar 

  • Alvarez E, Ruiz-Gutierrez V, Sobrino F et al (2001) Age-related changes in membrane lipid composition, fluidity and respiratory burst in rat peritoneal neutrophils. Clin Exp Immunol 124:95–102

    PubMed  CAS  Google Scholar 

  • Antonaci S, Jirillo E, Ventura MT et al (1984) Non-specific immunity in aging-deficiency of monocyte and polymorphonuclear cell-mediated functions. Mech Ageing Dev 24:367–375

    PubMed  CAS  Google Scholar 

  • Barthel SR, Johansson MW, McNamee DM et al (2008) Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol 83:1–12

    PubMed  CAS  Google Scholar 

  • Behm CA, Ovington KS (2000) The role of eosinophils in parasitic helminth infections insights from genetically modified mice. Parasitol Today 16:202–209

    PubMed  CAS  Google Scholar 

  • Bhushan M, Cumberbatch M, Dearman RJ et al (2002) Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 146:32–40

    PubMed  CAS  Google Scholar 

  • Biasi D, Carletto A, Dellagnola C et al (1996) Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation 20:673–681

    PubMed  CAS  Google Scholar 

  • Boehmer ED, Goral J, Faunce DE et al (2004) Age-dependent decrease in toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 75:342–349

    PubMed  CAS  Google Scholar 

  • Born J, Uthgenannt D, Dodt C et al (1995) Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech Ageing Dev 84:113–126

    PubMed  CAS  Google Scholar 

  • Borregaard N, Sorensen OE, Theilgaard-Wnchl K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345

    PubMed  CAS  Google Scholar 

  • Braga PC, Sala MT, Dal Sasso M et al (1998) Influence of age on oxidative bursts (chemiluminescence) of polymorphonuclear neutrophil leukocytes. Gerontology 44:192–197

    PubMed  CAS  Google Scholar 

  • Busse PJ, Mathur SK (2010) Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 126:690–699

    PubMed  CAS  Google Scholar 

  • Butcher S, Chahel H, Lord JM (2000) Ageing and the neutrophil: no appetite for killing? Immunology 100:411–416

    PubMed  CAS  Google Scholar 

  • Butcher SK, Chahal H, Nayak L et al (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886

    PubMed  CAS  Google Scholar 

  • Cakman I, Kirchner H, Rink L (1997) Zinc supplementation reconstitutes the production of interferon-alpha by leukocytes from elderly persons. J Interferon Cytokine Res 17:469–472

    PubMed  CAS  Google Scholar 

  • Cassatella MA (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today 16:21–26

    PubMed  CAS  Google Scholar 

  • Chatta GS, Andrews RG, Rodger E et al (1993) Hematopoietic progenitors and aging-alterations in granulocytic precursors and responsiveness to recombinant human G-Csf, Gm-Csf, and Il-3. J Gerontol 48:M207–M212

    PubMed  CAS  Google Scholar 

  • Chaves MM, Costa DC, Pereira CCT et al (2007) Role of inositol 1,4,5-triphosphate and p38 mitogen-activated protein kinase in reactive oxygen species generation by granulocytes in a cyclic AMP-dependent manner: an age-related phenomenon. Gerontology 53:228–233

    PubMed  CAS  Google Scholar 

  • Damtew B, Spagnuolo PJ, Goldsmith GGH et al (1990) Neutrophil adhesion in the elderly – inhibitory effects of plasma from elderly patients. Clin Immunol Immunopathol 54:247–255

    PubMed  CAS  Google Scholar 

  • De Martinis M, Modesti M, Ginaldi L (2004) Phenotypic and functional changes of circulating monocytes and polymorphonuclear leucocytes from elderly persons. Immunol Cell Biol 82:415–420

    PubMed  Google Scholar 

  • Denzel A, Maus UA, Gomez MR et al (2008) Basophils enhance immunological memory responses. Nat Immunol 9:733–742

    PubMed  CAS  Google Scholar 

  • Di Lorenzo G, Balistreri CR, Candore G et al (1999) Granulocyte and natural killer activity in the elderly. Mech Ageing Dev 108:25–38

    PubMed  Google Scholar 

  • Di Lorenzo G, Pacor ML, Pellitteri ME et al (2003) A study of age-related IgE pathophysiological changes. Mech Ageing Dev 124:445–448

    PubMed  Google Scholar 

  • Di Lorenzo G, Leto-Barone MS, La Piana S et al (2012) Clinical course of rhinitis and changes in vivo and in vitro of allergic parameters in elderly patients: a long-term follow-up study. Clin Exp Med 13(1):67–73

    PubMed  Google Scholar 

  • Egger G, Burda A, Mitterhammer H et al (2003) Impaired blood polymorphonuclear leukocyte migration and infection risk in severe trauma. J Infect 47:148–154

    PubMed  CAS  Google Scholar 

  • Esparza B, Sanchez H, Ruiz M et al (1996) Neutrophil function in elderly persons assessed by flow cytometry. Immunol Invest 25:185–190

    PubMed  CAS  Google Scholar 

  • Fanger NA, Liu CL, Guyre PM et al (1997) Activation of human T cells by major histocompatibility complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid. Blood 89:4128–4135

    PubMed  CAS  Google Scholar 

  • Ferretti S, Bonneau O, Dubois GR et al (2003) IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 170:2106–2112

    PubMed  CAS  Google Scholar 

  • Fortin CF, Larbi A, Lesur O et al (2006) Impairment of SHIP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072

    PubMed  CAS  Google Scholar 

  • Fortin CF, Lesur O, Fulop T (2007a) Effects of aging on triggering receptor expressed on myeloid cells (TREM)-1-induced PMN functions. FEBS Lett 581:1173–1178

    PubMed  CAS  Google Scholar 

  • Fortin CF, Larbi A, Dupuis G et al (2007b) GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 8:173–187

    PubMed  CAS  Google Scholar 

  • Fortin CF, Lesur O, Fulop T (2007c) Effects of TREM-1 activation in human neutrophils: activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int Immunol 19:41–50

    PubMed  CAS  Google Scholar 

  • Fortin CF, McDonald PP, Lesur O et al (2008) Aging and neutrophils: there is still much to do. Rejuvenation Res 11:873–882

    PubMed  CAS  Google Scholar 

  • Fortin CF, Larbi A, Dupuis G et al (2009a) Signal transduction changes in fMLP, TLRs, TREM-1 and GM-CSF receptors in PMN with aging. In: Handbook on immunosenescence. Springer, Heidelberg

    Google Scholar 

  • Fortin CF, Ear T, McDonald PP (2009b) Autocrine role of endogenous interleukin-18 on inflammatory cytokine generation by human neutrophils. FASEB J 23:194–203

    PubMed  CAS  Google Scholar 

  • Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    PubMed  CAS  Google Scholar 

  • Fulop T (1994) Signal-transduction changes in granulocytes and lymphocytes with aging. Immunol Lett 40:259–268

    PubMed  CAS  Google Scholar 

  • Fulop T, Fouquet C, Allaire P et al (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96:15–34

    PubMed  CAS  Google Scholar 

  • Fulop T, Goulet AC, Desgeorges S et al (1999) Changes in the apoptosis of polymorphonuclear granulocytes with aging. FASEB J 13:A519

    Google Scholar 

  • Fulop T, Douziech N, Desgeorges S et al (2000a) Signal transduction alterations in the apoptosis of polymorphonuclear granulocytes with aging under GM-CSF stimulation. FASEB J 14:A1156

    Google Scholar 

  • Fulop T, Douziech N, Desgeorges S et al (2000b) Apoptosis in T lymphocytes and polymorphonuclear leukocytes with aging. FASEB J 14:A194

    Google Scholar 

  • Fulop T, Larbi A, Douziech N et al (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226

    PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Douziech N et al (2006) Cytokine receptor signalling and aging. Mech Ageing Dev 127:526–537

    PubMed  CAS  Google Scholar 

  • Fulop T, Kotb R, Fortin CF et al (2010) Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 1197:158–165

    PubMed  CAS  Google Scholar 

  • Gabriel P, Cakman I, Rink L (2002) Overproduction of monokines by leukocytes after stimulation with lipopolysaccharide in the elderly. Exp Gerontol 37:235–247

    PubMed  CAS  Google Scholar 

  • Geiger H, Rudolph KL (2009) Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol 30:360–365

    PubMed  CAS  Google Scholar 

  • Ginaldi L, De Martinis M, D’Ostilio A et al (1999) The immune system in the elderly III. Innate immunity. Immunol Res 20:117–126

    PubMed  CAS  Google Scholar 

  • Gomez CR, Hirano S, Cutro BT et al (2007) Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 35:246–251

    PubMed  CAS  Google Scholar 

  • Gomez CR, Nomellini V, Faunce DE et al (2008) Innate immunity and aging. Exp Gerontol 43:718–728

    PubMed  CAS  Google Scholar 

  • Gosselin EJ, Wardwell K, Rigby WFC et al (1993) Induction of Mhc class-Ii on human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor, Ifn-gamma, and Il-3. J Immunol 151:1482–1490

    PubMed  CAS  Google Scholar 

  • Grubeck-Loebenstein B, Della Bella S, Iorio AM et al (2009) Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res 21:201–209

    PubMed  CAS  Google Scholar 

  • Gunin AG, Kornilova NK, Vasilieva OV et al (2011) Age-related changes in proliferation, the numbers of mast cells, eosinophils, and CD45-positive cells in human dermis. J Gerontol A Biol Sci Med Sci 66:385–392

    PubMed  Google Scholar 

  • Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    PubMed  CAS  Google Scholar 

  • Haase H, Mocchegiani E, Rink L (2006) Correlation between zinc status and immune function in the elderly. Biogerontology 7:421–428

    PubMed  CAS  Google Scholar 

  • Hannah S, Mecklenburgh K, Rahman I et al (1995) Hypoxia prolongs neutrophil survival in-vitro. FEBS Lett 372:233–237

    PubMed  CAS  Google Scholar 

  • Hellewell PG, Williams TJ (1994) The neutrophil. In: The handbook of immunopharmacology: immunopharmacology of neutrophils. Academic, London

    Google Scholar 

  • Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    PubMed  CAS  Google Scholar 

  • Iking-Konert C, Wagner C, Denefleh B et al (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130:501–508

    PubMed  CAS  Google Scholar 

  • Issa JP (2003) Age-related epigenetic changes and the immune system. Clin Immunol 109:103–108

    PubMed  CAS  Google Scholar 

  • Ito Y, Kajkenova O, Feuers RJ et al (1998) Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J Gerontol A Biol Sci Med Sci 53:M169–M175

    PubMed  CAS  Google Scholar 

  • Kim KC, Friso S, Choi SW (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 20:917–926

    PubMed  CAS  Google Scholar 

  • Kita H (2011) Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev 242:161–177

    PubMed  CAS  Google Scholar 

  • Klut ME, Ruehlmann DO, Li L et al (2002) Age-related changes in the calcium homeostasis of adherent neutrophils. Exp Gerontol 37:533–541

    PubMed  CAS  Google Scholar 

  • Kovacs EJ, Palmer JL, Fortin CF et al (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30:319–324

    PubMed  CAS  Google Scholar 

  • Larbi A, Franceschi C, Mazzatti D et al (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda) 23:64–74

    CAS  Google Scholar 

  • Laupland KB, Church DL, Mucenski M et al (2003) Population-based study of the epidemiology of and the risk factors for invasive Staphylococcus aureus infections. J Infect Dis 187:1452–1459

    PubMed  Google Scholar 

  • Leng SX, Xue QL, Huang Y et al (2005) Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol 40:982–987

    PubMed  Google Scholar 

  • Leng SX, Xue QL, Tian J et al (2007) Inflammation and frailty in older women. J Am Geriatr Soc 55:864–871

    PubMed  Google Scholar 

  • Leng SX, Xue QL, Tian J et al (2009) Associations of neutrophil and monocyte counts with frailty in community-dwelling disabled older women: results from the Women’s Health and Aging Studies I. Exp Gerontol 44:511–516

    PubMed  Google Scholar 

  • Ligthart GJ, Corberand JX, Fournier C et al (1984) Admission criteria for immunogerontological studies in man – the Senieur protocol. Mech Ageing Dev 28:47–55

    PubMed  CAS  Google Scholar 

  • Lipschitz DA, Udupa KB, Indelicato SR et al (1991) Effect of age on 2Nd messenger generation in neutrophils. Blood 78:1347–1354

    PubMed  CAS  Google Scholar 

  • Lloyd AR, Oppenheim JJ (1992) Polys lament – the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune-response. Immunol Today 13:169–172

    PubMed  CAS  Google Scholar 

  • Lord JM, Butcher S, Killampali V et al (2001) Neutrophil ageing and immunesenescence. Mech Ageing Dev 122:1521–1535

    PubMed  CAS  Google Scholar 

  • Mahbub S, Brubaker AL, Kovacs EJ (2011) Aging of the innate immune system: an update. Curr Immunol Rev 7:104–115

    PubMed  CAS  Google Scholar 

  • Mantovani A, Cassatella MA, Costantini C et al (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    PubMed  CAS  Google Scholar 

  • Marone G, Poto S, Dimartino L et al (1986) Human basophil releasability.1. Age-related-changes in basophil releasability. J Allergy Clin Immunol 77:377–383

    PubMed  CAS  Google Scholar 

  • Mathur SK, Schwantes EA, Jarjour NN et al (2008) Age-related changes in eosinophil function in human subjects. Chest 133:412–419

    PubMed  Google Scholar 

  • Mclaughlin B, Omalley K, Cotter TG (1986) Age-related differences in granulocyte chemotaxis and degranulation. Clin Sci 70:59–62

    PubMed  CAS  Google Scholar 

  • Min B, Brown MA, LeGros G (2012) Understanding the roles of basophils: breaking dawn. Immunology 135:192–197

    PubMed  CAS  Google Scholar 

  • Mohacsi A, Fulop T, Kozlovszky B et al (1992) Superoxide anion production and intracellular free calcium levels in resting and stimulated polymorphonuclear leukocytes obtained from healthy and arteriosclerotic subjects of various ages. Clin Biochem 25:285–288

    PubMed  CAS  Google Scholar 

  • Muniz VS, Weller PF, Neves JS (2012) Eosinophil crystalloid granules: structure, function, and beyond. J Leukoc Biol 92:281–288

    PubMed  CAS  Google Scholar 

  • Murciano C, Yanez A, O’Connor JE et al (2008) Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol 53:214–221

    PubMed  CAS  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    PubMed  CAS  Google Scholar 

  • Nel HJ, Hams E, Saunders SP et al (2011) Impaired basophil induction leads to an age-dependent innate defect in type 2 immunity during helminth infection in mice. J Immunol 186:4631–4639

    PubMed  CAS  Google Scholar 

  • Niwa Y, Kasama T, Miyachi Y et al (1989) Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging – cross-sectional and longitudinal-studies. Life Sci 44:1655–1664

    PubMed  CAS  Google Scholar 

  • Nomellini V, Faunce DE, Gomez CR et al (2008) An age-associated increase in pulmonary inflammation after burn injury is abrogated by CXCR2 inhibition. J Leukoc Biol 83:1493–1501

    PubMed  CAS  Google Scholar 

  • Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41:S504–S512

    PubMed  CAS  Google Scholar 

  • Panda A, Arjona A, Sapey E et al (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333

    PubMed  CAS  Google Scholar 

  • Panda A, Qian F, Mohanty S et al (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184:2518–2527

    PubMed  CAS  Google Scholar 

  • Pawelec G, Larbi A, Derhovanessian E (2010) Senescence of the human immune system. J Comp Pathol 141:S39–S44

    Google Scholar 

  • Plackett TP, Boehmer ED, Faunce DE et al (2004) Aging and innate immune cells. J Leukoc Biol 76:291–299

    PubMed  CAS  Google Scholar 

  • Prasad AS, Fitzgerald JT, Hess JW et al (1993) Zinc-deficiency in elderly patients. Nutrition 9:218–224

    PubMed  CAS  Google Scholar 

  • Prasad AS, Beck FWJ, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844

    PubMed  CAS  Google Scholar 

  • Rao KMK (1986) Age-related decline in ligand-induced actin polymerization in human-leukocytes and platelets. J Gerontol 41:561–566

    PubMed  CAS  Google Scholar 

  • Rao KMK, Currie MS, Padmanabhan J et al (1992) Age-related alterations in actin cytoskeleton and receptor expression in human-leukocytes. J Gerontol 47:B37–B44

    PubMed  CAS  Google Scholar 

  • Reato G, Cuffini AM, Tullio V et al (1999) Co-amoxiclav affects cytokine production by human polymorphonuclear cells. J Antimicrob Chemother 43:715–718

    PubMed  CAS  Google Scholar 

  • Renshaw M, Rockwell J, Engleman C et al (2002) Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol 169:4697–4701

    PubMed  CAS  Google Scholar 

  • Rink L, Kirchner H (2000) Zinc-altered immune function and cytokine production. J Nutr 130:1407S–1411S

    PubMed  CAS  Google Scholar 

  • Rink L, Cakman I, Kirchner H (1998) Altered cytokine production in the elderly. Mech Ageing Dev 102:199–209

    PubMed  CAS  Google Scholar 

  • Routsi C, Stamataki E, Nanas S et al (2008) Increased levels of serum S100B protein in critically ill patients without brain injury – Reply. Shock 30:222–223

    Google Scholar 

  • Savill JS, Wyllie AH, Henson JE et al (1989) Macrophage phagocytosis of aging neutrophils in inflammation – programmed cell-death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83:865–875

    PubMed  CAS  Google Scholar 

  • Schröder AK, Rink L (2003) Neutrophil immunity of the elderly. Mech Ageing Dev 124:419–425

    PubMed  Google Scholar 

  • Schröder AK, der Ohe M, Kolling U et al (2006a) Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators. Immunology 119:317–327

    PubMed  Google Scholar 

  • Schröder AK, Uciechowski P, Fleischer D et al (2006b) Crosslinking of CD66b on peripheral blood neutrophils mediates the release of interleukin-8 from intracellular storage. Hum Immunol 67:676–682

    PubMed  Google Scholar 

  • Schwarzenbach HR, Nakagawa T, Conroy MC et al (1982) Skin reactivity, basophil de-granulation and Ige levels in aging. Clin Allergy 12:465–473

    PubMed  CAS  Google Scholar 

  • Seres I, Csongor J, Mohacsi A et al (1993) Age-dependent alterations of human recombinant Gm-Csf effects on human granulocytes. Mech Ageing Dev 71:143–154

    PubMed  CAS  Google Scholar 

  • Shaw AC, Joshi S, Greenwood H et al (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513

    PubMed  CAS  Google Scholar 

  • Shaw AC, Panda A, Joshi SR et al (2011) Dysregulation of human toll-like receptor function in aging. Ageing Res Rev 10:346–353

    PubMed  CAS  Google Scholar 

  • Simell B, Vuorela A, Ekstrom N et al (2011) Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 29:1929–1934

    PubMed  CAS  Google Scholar 

  • Smith P, Dunne DW, Fallon PG (2001) Defective in vivo induction of functional type 2 cytokine responses in aged mice. Eur J Immunol 31:1495–1502

    PubMed  CAS  Google Scholar 

  • Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494

    PubMed  CAS  Google Scholar 

  • Song C, Vandewoude M, Stevens W et al (1999) Alterations in immune functions during normal aging and Alzheimer’s disease. Psychiatry Res 85:71–80

    PubMed  CAS  Google Scholar 

  • Starr JM, Deary IJ (2011) Sex differences in blood cell counts in the Lothian Birth Cohort 1921 between 79 and 87 years. Maturitas 69:373–376

    PubMed  Google Scholar 

  • Sullivan BM, Liang HE, Bando JK et al (2011) Genetic analysis of basophil function in vivo. Nat Immunol 12:527–535

    PubMed  CAS  Google Scholar 

  • Swain SL, Nikolich-Zugich J (2009) Key research opportunities in immune system aging. J Gerontol A Biol Sci Med Sci 64:183–186

    PubMed  Google Scholar 

  • Swift ME, Burns AL, Gray KL et al (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117:1027–1035

    PubMed  CAS  Google Scholar 

  • Tortorella C, Polignano A, Piazzolla G et al (1996) Lipopolysaccharide-, granulocyte-monocyte colony stimulating factor and pentoxifylline-mediated effects on formyl-methionyl-leucine-phenylalanine-stimulated neutrophil respiratory burst in the elderly. Microbios 85:189–198

    PubMed  CAS  Google Scholar 

  • Tortorella C, Piazzolla G, Spaccavento F et al (1998) Effects of granulocyte-macrophage colony-stimulating factor and cyclic AMP interaction on human neutrophil apoptosis. Mediators Inflamm 7:391–396

    PubMed  CAS  Google Scholar 

  • Tortorella C, Piazzolla G, Spaccavento F et al (1999) Age-related effects of oxidative metabolism and cyclic AMP signaling on neutrophil apoptosis. Mech Ageing Dev 110:195–205

    PubMed  CAS  Google Scholar 

  • Tortorella C, Piazzolla G, Spaccavento F et al (2000) Regulatory role of extracellular matrix proteins in neutrophil respiratory burst during aging. Mech Ageing Dev 119:69–82

    PubMed  CAS  Google Scholar 

  • Tortorella C, Stella I, Piazzolla G et al (2004) Role of defective ERK phosphorylation in the impaired GM-CSF-induced oxidative response of neutrophils in elderly humans. Mech Ageing Dev 125:539–546

    PubMed  CAS  Google Scholar 

  • Tortorella C, Simone O, Piazzolla G et al (2006) Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay Fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci 61:1111–1118

    PubMed  Google Scholar 

  • Tortorella C, Simone O, Piazzolla G et al (2007) Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res Rev 6:81–93

    PubMed  CAS  Google Scholar 

  • Uciechowski P, Rink L (2009) Neutrophil granulocyte functions in the elderly. In: Handbook on immunosenescence. Springer, Heidelberg

    Google Scholar 

  • Van Duin D, Shaw AC (2007) Toll-like receptors in older adults. J Am Geriatr Soc 55:1438–1444

    PubMed  Google Scholar 

  • Van Panhuys N, Prout M, Forbes E et al (2011) Basophils are the major producers of IL-4 during primary helminth infection. J Immunol 186:2719–2728

    PubMed  Google Scholar 

  • Varga Z, Kovacs EM, Paragh G et al (1988) Effect of elastin peptides and N-formyl-methionyl-leucyl phenylalanine on cytosolic free calcium in polymorphonuclear leukocytes of healthy middle-aged and elderly subjects. Clin Biochem 21:127–130

    PubMed  CAS  Google Scholar 

  • Von der Ohe M, Altstaedt J, Gross U et al (2001) Human neutrophils produce macrophage inhibitory protein-1 beta but not type 1 interferons in response to viral stimulation. J Interferon Cytokine Res 21:241–247

    PubMed  Google Scholar 

  • Ward JR, Heath PR, Catto JW et al (2011) Regulation of neutrophil senescence by MicroRNAs. PLoS One 6(1):e15810

    PubMed  CAS  Google Scholar 

  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050

    PubMed  CAS  Google Scholar 

  • Wenisch C, Patruta S, Daxbock F et al (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45

    PubMed  CAS  Google Scholar 

  • Wessels I, Fleischer D, Rink L et al (2010a) Changes in chromatin structure and methylation of the human interleukin-1 beta gene during monopoiesis. Immunology 130:410–417

    PubMed  CAS  Google Scholar 

  • Wessels I, Jansen J, Rink L et al (2010b) Immunosenescence of polymorphonuclear neutrophils. ScientificWorldJournal 10:145–160

    PubMed  CAS  Google Scholar 

  • Wessels I, Haase H, Engelhardt G et al (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24(1):289–297

    PubMed  CAS  Google Scholar 

  • Whitelaw DA, Rayner BL, Willcox PA (1992) Community-acquired bacteremia in the elderly – a prospective-study of 121 cases. J Am Geriatr Soc 40:996–1000

    PubMed  CAS  Google Scholar 

  • Yagi T, Sato A, Hayakawa H et al (1997) Failure of aged rats to accumulate eosinophils in allergic inflammation of the airway. J Allergy Clin Immunol 99:38–47

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, Yasuda K, Tanaka H et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706–712

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Rink PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uciechowski, P., Rink, L. (2014). Basophil, Eosinophil, and Neutrophil Functions in the Elderly. In: Massoud, A., Rezaei, N. (eds) Immunology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39495-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39495-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39494-2

  • Online ISBN: 978-3-642-39495-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics