Skip to main content

T Cell-Mediated Immunity in the Immunosenescence Process

  • Chapter
  • First Online:
Immunology of Aging

Abstract

Immunosenescence contributes to render older adults more susceptible to pathogens and to develop main age-related diseases. With the ever-increasing rise in the number and proportion of older persons worldwide, one of the challenges of a “long-life society” is to ensure that the years gained are not only healthy and disability-free years but also offering a good quality of life. In this perspective, recent research has concentrated on identifying the factors hindering healthy ageing, and among them, the age-related changes of the immune system have thus been particularly investigated. With respect to its central role in orchestrating the immune response, this chapter describes the main features of T cell-mediated immune senescence and the underlying mechanisms contributing to this state of increased vulnerability. Furthermore, it will explore the means by which T cell functions could be identified by using biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    PubMed  CAS  Google Scholar 

  • Arden B, Klotz JL, Siu G et al (1985) Diversity and structure of genes of the alpha family of mouse T-cell antigen receptor. Nature 316:783–787

    PubMed  CAS  Google Scholar 

  • Arnold CR, Wolf J, Brunner S et al (2011) Gain and loss of T cell subsets in old age–age-related reshaping of the T cell repertoire. J Clin Immunol 31:137–146

    PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    PubMed  CAS  Google Scholar 

  • Aspinall R, Pido J, Andrew D (2000) A simple method for the measurement of sjTREC levels in blood. Mech Ageing Dev 121:59–67

    PubMed  CAS  Google Scholar 

  • Aspinall R, Pido-Lopez J, Imami N et al (2007) Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination. Rejuvenation Res 10(1):5–17

    PubMed  CAS  Google Scholar 

  • Aspinall R, Pitts D, Lapenna A et al (2010) Immunity in the elderly: the role of the thymus. J Comp Pathol 142(Suppl 1):S111–S115

    PubMed  CAS  Google Scholar 

  • Becker TC, Coley SM, Wherry EJ et al (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273

    PubMed  CAS  Google Scholar 

  • Bogue M, Roth DB (1996) Mechanism of V(D)J recombination. Curr Opin Immunol 8:175–180

    PubMed  CAS  Google Scholar 

  • Borthwick NJ, Lowdell M, Salmon M et al (2000) Loss of CD28 expression on CD8(+) T cells is induced by IL-2 receptor γ-chain signaling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol 12:1005–1013

    PubMed  CAS  Google Scholar 

  • Brunner S, Herndler-Brandstetter D, Weinberger B et al (2011) Persistent viral infections and immune aging. Ageing Res Rev 10:362–369

    PubMed  CAS  Google Scholar 

  • Chain JL, Joachims ML, Hooker SW et al (2005) Real-time PCR method for the quantitative analysis of human T-cell receptor gamma and beta gene rearrangements. J Immunol Methods 300:12–23

    PubMed  CAS  Google Scholar 

  • Chen JC, Lim FC, Wu Q et al (2010) Maintenance of naïve CD8 T-cells in nonagerians by leptine, IGFBP3 and T3. Mech Ageing Dev 131:37–38

    Google Scholar 

  • Chiu WK, Fann M, Weng NP (2006) Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol 177:7802–7810

    PubMed  CAS  Google Scholar 

  • Cicin-Sain L, Messaoudi I, Park B et al (2007) Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc Natl Acad Sci U S A 104:19960–19965

    PubMed  CAS  Google Scholar 

  • Douek DC, McFarland RD, Keiser PH et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    PubMed  CAS  Google Scholar 

  • Douek DC, Vescio RA, Betts MR et al (2000) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstruction. Lancet 355:1875–1878

    PubMed  CAS  Google Scholar 

  • Effros RB (2007) Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25:599–604

    PubMed  CAS  Google Scholar 

  • Effros RB, Cai Z, Linton PJ (2003) CD8 T cells and aging. Crit Rev Immunol 23:45–64

    PubMed  CAS  Google Scholar 

  • Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A et al (2011) Age-related deregulation of naive T cell homeostasis in elderly humans. Age 33:197–207

    PubMed  CAS  Google Scholar 

  • Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176

    PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    PubMed  CAS  Google Scholar 

  • Frasca D, Diaz A, Romero M et al (2011) Age effects on B cells and humoral immunity in humans. Ageing Res Rev 10:330–335

    PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Witkowski JM et al (2010) Aging, frailty and age-related diseases. Biogerontology 11:547–563

    PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Kotb R et al (2011) Aging, immunity, and cancer. Discov Med 11:537–550

    PubMed  Google Scholar 

  • Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14

    PubMed  Google Scholar 

  • Giunta B, Fernandez F, Nikolic WV et al (2008) Inflammaging as a prodrome to Alzheimer's disease. J Neuroinflammation 5:51

    PubMed  Google Scholar 

  • Goronzy JJ, Fulbright JW, Crowson CS et al (2001) Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol 75:12182–12187

    PubMed  CAS  Google Scholar 

  • Govind S, Lapenna A, Lang PO et al (2012) Immunotherapy of immunosenescence: who, how and when? Open Longev Sci 6:56–63

    Google Scholar 

  • Gruener NH, Lechner F, Jung MC et al (2001) Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol 75:5550–5558

    PubMed  CAS  Google Scholar 

  • Guimond M, Veenstra RG, Grindler DJ et al (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4 T cells. Nat Immunol 10:149–157

    PubMed  CAS  Google Scholar 

  • Gupta S, Gollapudi S (2008) CD95-mediated apoptosis in naïve, central and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp Gerontol 43:266–274

    PubMed  CAS  Google Scholar 

  • Haines CJ, Giffon TD, Lu LS et al (2009) Human CD4+ T cells recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J Exp Med 206:275–285

    PubMed  CAS  Google Scholar 

  • Haynes LES (2005) The effect of age on the cognate function of CD4+ T cells. Immunol Rev 205:220–228

    PubMed  CAS  Google Scholar 

  • Hazenberg MD, Stuart JW, Otto SA et al (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95:249–255

    PubMed  CAS  Google Scholar 

  • Hazenberg MD, Otto SA, de Pauw ES et al (2002) T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 99:3449–3453

    PubMed  CAS  Google Scholar 

  • Hazenberg MD, Borghans JAM, Boer RJ et al (2003) Thymic output: a bad TREC record. Nat Immunol 4:97–99

    PubMed  CAS  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Jenewein B et al (2011) Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol 186:6965–6971

    PubMed  CAS  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Tzankov A et al (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 91:197–205

    PubMed  Google Scholar 

  • Hirokawa K, Utsuyama M, Ishikawa T et al (2009) Decline of T cell-related immune functions in cancer patients and an attempt to restore then through infusion of activated autologous T cells. Mech Ageing Dev 130:86–91

    PubMed  CAS  Google Scholar 

  • Hünig T, Lücher F, Elfein K et al (2010) CD28 and IL-4: two heavyweights controlling the balance between immunity and inflammation. Med Microbiol Immunol 199:239–246

    PubMed  Google Scholar 

  • Janssens ACJW, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–R173

    PubMed  CAS  Google Scholar 

  • Jiang Q, Li WQ, Aiello FB et al (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16:513–533

    PubMed  CAS  Google Scholar 

  • Karrer U, Sierro S, Wagner M et al (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170:2022–2029

    PubMed  CAS  Google Scholar 

  • Kelley KW, Weigent DA, Kooijman R (2007) Protein hormones and immunity. Brain Behav Immun 21:384–392

    PubMed  CAS  Google Scholar 

  • Kilpatrick RD, Rickabaugh T, Hultin LE et al (2008) Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol 180:1499–1507

    PubMed  CAS  Google Scholar 

  • Kim K, Le CK, Sayers TJ et al (1998) The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2 and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J Immunol 160:5735–5741

    PubMed  CAS  Google Scholar 

  • Kimberlin DW, Whitley RJ (2007) Varicella-zoster vaccine for the prevention of herpes zoster. N Eng J Med 356:1338–1343

    CAS  Google Scholar 

  • Kohler S, Wagner U, Pierer M et al (2005) Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 35:1987–1994

    PubMed  CAS  Google Scholar 

  • Kondrack RM, Harbertson J, Tan JT et al (2003) Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 198:1797–1806

    PubMed  CAS  Google Scholar 

  • Kong FK, Chen CL, Cooper M (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8:97–104

    PubMed  CAS  Google Scholar 

  • Korn T, Oukka M, Kuchroo V et al (2007) Th17 cells: effector cells with inflammatory properties. Semin Immunol 19:362.371

    PubMed  Google Scholar 

  • Lages CS, Suffia I, Velilla PA et al (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181:1835–1848

    PubMed  CAS  Google Scholar 

  • Lang PO, Aspinall R (2012) Immunosenescence and herd immunity: with an ever increasing aging population do we need to rethink vaccine schedules? Expert Rev Vaccines 11:167–176

    PubMed  Google Scholar 

  • Lang PO, Michel JP (2011) Herpes Zoster vaccine: what are the potential benefits for the ageing and older adults? Eur Geriatr Med 2:134–139

    Google Scholar 

  • Lang PO, Govind S, Mitchell WA et al (2010a) Influenza vaccine effectiveness in aged individuals: the role played by cell-mediated immunity. Eur Geriatr Med 1:233–238

    Google Scholar 

  • Lang PO, Govind S, Mitchell WA et al (2010b) Vaccine effectiveness in older individuals: what has been learned from the influenza-vaccine experience. Ageing Res Rev 10:389–395

    PubMed  Google Scholar 

  • Lang PO, Mitchell WA, Lapenna A et al (2010c) Immunological pathogenesis of main age-related diseases and frailty: role of immunosenescence. Eur Geriatric Med 1:112–121

    Google Scholar 

  • Lang PO, Mitchell WA, Govind S et al (2011) Real time-PCR assay estimating the naive T-cell pool in whole blood and dried blood spot samples: Pilot study in young adults. J Immunol Methods 369:133–140

    PubMed  CAS  Google Scholar 

  • Lang PO, Samaras D, Aspinall R et al (2012a) How important is Vitamin D in preventing infections? Osteoporos Int 24(5):1537–1553

    PubMed  Google Scholar 

  • Lang PO, Govind S, Dramé M et al (2012b) Comparison of manual and automated DNA purification for measuring TREC in dried blood spot (DBS) samples with qPCR. J Immunol Methods 384:118–127

    PubMed  CAS  Google Scholar 

  • Lang PO, Govind S, Aspinall R (2013a) Reversing T cell immunosenescence: why, who, and how. Age 35(3):609–620

    PubMed  Google Scholar 

  • Lang PO, Govind S, Dramé M et al (2013b) Measuring the TREC ratio in dried blood spot samples: intra- and inter-filter paper cards reproducibility. J Immunol Methods 389:1–8

    PubMed  CAS  Google Scholar 

  • Larbi A, Pawelec G, Wong SC et al (2011) Impact of age on T-cell signaling: a general defect or specific alteration? Ageing Res Rev 10:370–378

    PubMed  CAS  Google Scholar 

  • Levin MJ, Hayward AR (1996) The varicella vaccine. Prevention of herpes zoster. Infect Dis Clin North Am 10:657–675

    PubMed  CAS  Google Scholar 

  • Livak F, Schatz D (1996) T-cell receptor α locus V(D)J recombination by-products are abundant in thymocytes and mature T-cells. Mol Cell Biol 16:609–618

    PubMed  CAS  Google Scholar 

  • Lloyd-Sherlock P, McKee M, Ebrahim S et al (2012) Population ageing and health. Lancet 379:1295–1296

    PubMed  Google Scholar 

  • Lutz W, Sanderson W, Scherbov S (1997) Doubling of world population unlikely. Nature 387:803–805

    PubMed  CAS  Google Scholar 

  • Macaulay R, Akbar AN, Henson SM (2012) The role of the T-cell in a aged-related inflammation. Age 35(3):563–572

    PubMed  Google Scholar 

  • Maggi E, Cosmi L, Liotta F et al (2005) Thymic regulatory T cells. Autoimmun Rev 4:579–586

    PubMed  CAS  Google Scholar 

  • Markert ML, Boeck A, Hale LP et al (1999) Transplantation of thymus tissue in complete DiGeorge syndrome. N Eng J Med 341:1180–1189

    CAS  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161:497–503

    PubMed  CAS  Google Scholar 

  • Murray JM, Kaufmann GR, Hodgkin PD et al (2003) Naive T cells are maintained by thymic output in early ages but by proliferation without phenotype change after age twenty. Immunol Cell Biol 81:487–495

    PubMed  Google Scholar 

  • Na IK, Letsch A, Guerreiro M et al (2009) Human bone marrow as a source to generate CMV-specific CD4+ T cells with multifunctional capacity. J Immunother 32:907–913

    PubMed  Google Scholar 

  • Naylor K, Li G, Vallejo AN et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    PubMed  CAS  Google Scholar 

  • Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8:512–522

    PubMed  CAS  Google Scholar 

  • Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296:1029–1031

    PubMed  CAS  Google Scholar 

  • Ongrádi J, Kövesdi V (2010) Factors that may impact on immunosenescence: a appraisal. Immun Ageing 7:7

    PubMed  Google Scholar 

  • Ortman CL, Dittmar KA, Witte PL et al (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822

    PubMed  CAS  Google Scholar 

  • Ostan R, Bucci L, Capril M et al (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15:224–240

    PubMed  CAS  Google Scholar 

  • Oxman MN, Levin MJ, Johnson GR et al (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Eng J Med 352:2271–2284

    CAS  Google Scholar 

  • Pantaleo G, Soudeyns H, Demarest JF et al (1997) Evidence for rapid disappearance of initially expanded HIV-specific CD8+ T cell clones during primary HIV infection. Proc Natl Acad Sci U S A 94:9848–9853

    PubMed  CAS  Google Scholar 

  • Patel DD, Gooding ME, Parrott RE et al (2000) Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Eng J Med 342:1325–1332

    CAS  Google Scholar 

  • Pawelec G, Derhovanessian E, Larbi A et al (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56

    PubMed  CAS  Google Scholar 

  • Peck A, Mellins ED (2010) Precarious balance: Th17 cells in host defense. Infect Immun 78:32–38

    PubMed  CAS  Google Scholar 

  • Pfister G, Savino W (2008) Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation 15:351–364

    PubMed  CAS  Google Scholar 

  • Pfister G, Weiskopf D, Lazuardi L et al (2006) Naive T cells in the elderly: are they still there? Ann N Y Acad Sci 1067:152–157

    PubMed  CAS  Google Scholar 

  • Sadighi Akha AA, Miller RA (2005) Signal transduction in the aging immune system. Curr Opin Immunol 17:486–491

    PubMed  CAS  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F et al (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168:5893–5899

    PubMed  CAS  Google Scholar 

  • Schluns KS, Klonowski KD, Lefrancois L (2004) Transregulation of memory CD8 T-cell proliferation by IL-15R bone marrow-derived cells. Blood 103:988–994

    PubMed  CAS  Google Scholar 

  • Sempowski GD, Hale LP, Sundy JS et al (2000) Leukemia inhibitory factor, oncostatin M, Il-6 and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    PubMed  CAS  Google Scholar 

  • Sewell AK, Price DA, Oxenius A et al (2000) Cytotoxic T lymphocyte responses to human immunodeficiency virus: control and escape. Stem Cells 18:230–244

    PubMed  CAS  Google Scholar 

  • Shankar P, Russo M, Harnisch B et al (2000) Impaired function of circulating HIV-specific CD8(+) T cells in chronic human immunodeficiency virus infection. Blood 96:3094–3101

    PubMed  CAS  Google Scholar 

  • Shaw AC, Panda A, Joshi SR et al (2011) Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10(346–353)

    Google Scholar 

  • Shetty P (2012) Grey matter: ageing in developing countries. Lancet 379:1285–1287

    PubMed  Google Scholar 

  • Siu G, Kronenberg M, Strauss E et al (1984) The structure, rearrangement and expression of D beta gene segments of the murine T-cell antigen receptor. Nature 311:344–350

    PubMed  CAS  Google Scholar 

  • Sprent J, Tough DF (1994) Lymphocyte life-span and memory. Science 265:1395–1400

    PubMed  CAS  Google Scholar 

  • Strindhall J, Nilsson BO, Lofgren S et al (2007) No Immune Risk Profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42:753–761

    PubMed  CAS  Google Scholar 

  • Surh CD, Sprent J (2002) Regulation of naïve and memory T-cell homeostasis. Microbes Infect 4:51–56

    PubMed  CAS  Google Scholar 

  • Takeshita S, Toda M, Ymagishi H (1989) Excision products of the T cell receptor gene support a progressive rearrangement model of the α/δ locus. EMBO J 8:3261–3270

    PubMed  CAS  Google Scholar 

  • Thorpe KE, Howard DH (2006) The rise in spending among Medicare beneficiaries: the role of chronic disease prevalence and change in treatment intensity. Health Aff 25:w378–w388

    Google Scholar 

  • Tokoyoda KZS, Hegazy AN, Albrecht I et al (2009) Professional memory CD4 T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730

    PubMed  CAS  Google Scholar 

  • Tokoyoda K, Hauser AE, Nakayama T et al (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10:193–200

    PubMed  CAS  Google Scholar 

  • Tsaknaridis L, Spencer L, Culbertson N et al (2003) Functional assay for human CD4 + CD25+ Treg cells reveals an age- dependent loss of suppressive activity. J Neurosci Res 74:296–308

    PubMed  CAS  Google Scholar 

  • United Nations (UN) (2008) World population ageing: 1950–2050. http://www.un.org/esa/population/publications/worldageing19502050/

  • Vallejo AN (2005) CD28 extinction in human T-cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    PubMed  CAS  Google Scholar 

  • Verschuren MC, Wolvers-Tettero IL, Breit TM et al (1997) Preferential rearrangements of the T cell receptor-delta-deleting elements in human T cells. J Immunol 159:4341–4349

    PubMed  Google Scholar 

  • Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138:30–50

    PubMed  CAS  Google Scholar 

  • Weinberg A, Zhang JH, Oxman MN et al (2009) Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis 200:1068–1076

    PubMed  CAS  Google Scholar 

  • Weinberg A, Huang S, Song LY et al (2012) Immune correlates of herpes zoster in HIV-infected children and youth. J Virol 86:2878–2881

    PubMed  CAS  Google Scholar 

  • Weinberger B, Lazuardi L, Weiskirchner I et al (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8 and CD4 T-cell subsets in the elderly. Hum Immunol 68:86–90

    PubMed  CAS  Google Scholar 

  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050

    PubMed  CAS  Google Scholar 

  • Wikby A, Ferguson F, Forsey R et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60:556–565

    PubMed  Google Scholar 

  • Wikby A, Mansson IA, Johansson B et al (2008) The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology 9:299–308

    PubMed  Google Scholar 

  • World Health Organization (WHO) (2002) Active ageing: a policy framework. http://whqlibdoc.who.int/hq/2002/who_nmh_nph_02.8.pdf

  • World Health Organization (WHO) (2011) Initiative of vaccine research (IVR) of the Immunization, Vaccines and Biologicals Department and the Ageing and Life Course (ALC) Department. Report on the ad-hoc Consultation on Ageing and Immunization, Geneva

    Google Scholar 

  • Yao X, Hamilton RG, Weng NP et al (2011) Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 29:5015–5021

    PubMed  Google Scholar 

  • Yawn BP, Wollan PC, Kurland MJ et al (2011) Herpes zoster recurrences more frequent than previously reported. Mayo Clin Proc 86:88–93

    PubMed  Google Scholar 

  • Yu M, Li G, Lee WW et al (2012) Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proc Natl Acad Sci U S A 109:E879–E888

    PubMed  CAS  Google Scholar 

  • Zhang X, Sun S, Hwang I et al (1998) Potent and selective stimulation of memory-phenotype CD8 T cells in vivo by IL-15. Immunity 8:591–599

    PubMed  CAS  Google Scholar 

  • Zubakov D, Liu F, van Zelm MC et al (2010) Estimating human age from T-cell DNA rearrangements. Curr Biol 20:R970–R971

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Olivier Lang MD, MPH, PD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, P.O. (2014). T Cell-Mediated Immunity in the Immunosenescence Process. In: Massoud, A., Rezaei, N. (eds) Immunology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39495-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39495-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39494-2

  • Online ISBN: 978-3-642-39495-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics