Skip to main content

Combinatorics of KP Solitons from the Real Grassmannian

  • Chapter
  • 1645 Accesses

Part of the book series: Abel Symposia ((ABEL,volume 8))

Abstract

Given a point A in the real Grassmannian, it is well-known that one can construct a soliton solution u A (x,y,t) to the KP equation. The contour plot of such a solution provides a tropical approximation to the solution when the variables x, y, and t are considered on a large scale and the time t is fixed. In this paper we give an overview of our work on the combinatorics of such contour plots. Using the positroid stratification and the Deodhar decomposition of the Grassmannian (and in particular the combinatorics of Go-diagrams), we completely describe the asymptotics of these contour plots when y or t go to ±∞. Other highlights include: a surprising connection with total positivity and cluster algebras; results on the inverse problem; and the characterization of regular soliton solutions—that is, a soliton solution u A (x,y,t) is regular for all times t if and only if A comes from the totally non-negative part of the Grassmannian.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The convention of [25] was to place the boundary vertices in clockwise order.

  2. 2.

    This forbidden pattern is in the shape of a backwards L, and hence is denoted and pronounced “Le.”

  3. 3.

    Actually Postnikov’s convention was to set π :(i)=j above, so the decorated permutation we are associating is the inverse one to his.

  4. 4.

    Our numbering differs from that in [22] in that the rows of our matrices in SL n are numbered from the bottom.

  5. 5.

    Since -diagrams are a special case of Go-diagrams, one might also refer to them as Lego diagrams.

  6. 6.

    Recall from Definition 2.11 that our convention is to label boundary vertices of a plabic graph 1,2,…,n in counterclockwise order. If one chooses the opposite convention, then one must replace the word counterclockwise in Definition 9.7 by clockwise.

References

  1. M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  2. G. Biondini, S. Chakravarty, Soliton solutions of the Kadomtsev-Petviashvili II equation, J. Math. Phys. 47 (2006), 033514 (26 pp).

    Article  MathSciNet  Google Scholar 

  3. G. Biondini, Y. Kodama, On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy, J. Phys. A, Math. Gen. 36 (2003), 10519–10536.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bjorner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics 231, Springer, New York, 2005.

    Google Scholar 

  5. S. Chakravarty, Y. Kodama, Classification of the line-solitons of KPII, J. Phys. A, Math. Theor. 41, (2008) 275209 (33 pp).

    Article  MathSciNet  Google Scholar 

  6. S. Chakravarty, Y. Kodama, A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, Contemp. Math. 471 (2008), 47–67.

    Article  MathSciNet  Google Scholar 

  7. S. Chakravarty, Y. Kodama, Soliton solutions of the KP equation and applications to shallow water waves, Stud. Appl. Math. 123 (2009), 83–151.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79, no. 3 (1985), 499–511.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. A. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, 1991.

    MATH  Google Scholar 

  10. S. Fomin, A. Zelevinsky, Cluster algebras I: foundations, J. Am. Math. Soc. 15 (2002), 497–529.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Freeman, J. Nimmo, Soliton-solutions of the Korteweg-deVries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A 95 (1983), 1–3.

    Article  MathSciNet  Google Scholar 

  12. R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  13. B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–541.

    MATH  Google Scholar 

  14. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53, no. 2 (1979), 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. sympos. pure math., Univ. Hawaii, Honolulu, Hawaii, 1979), 185–203, Proc. Sympos. Pure Math. XXXVI, Am. Math. Soc., Providence, 1980.

    Chapter  Google Scholar 

  16. Y. Kodama, Young diagrams and N-soliton solutions of the KP equation, J. Phys. A, Math. Gen. 37 (2004), 11169–11190.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Kodama, KP solitons in shallow water, J. Phys. A, Math. Theor. 43 (2010), 434004 (54 pp).

    Article  MathSciNet  Google Scholar 

  18. Y. Kodama, L. Williams, KP solitons, total positivity, and cluster algebras, Proc. Natl. Acad. Sci. USA 108, no. 22 (2011), 8984–8989.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Kodama, L. Williams, KP solitons and total positivity for the Grassmannian, arXiv:1106.0023.

  20. Y. Kodama, L. Williams, A Deodhar decomposition of the Grassmannian and the regularity of KP solitons, Adv. Math. 244 (2013), 979–1032.

    Article  MathSciNet  Google Scholar 

  21. G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Marsh, K. Rietsch, Parametrizations of flag varieties, Represent. Theory 8 (2004).

    Google Scholar 

  23. T. Miwa, M. Jimbo, E. Date, Solitons: differential equations, symmetries and infinite-dimensional algebras, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  24. S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons: the inverse scattering method, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1984.

    Google Scholar 

  25. A. Postnikov, Total positivity, Grassmannians, and networks, http://front.math.ucdavis.edu/math.CO/0609764.

  26. M. Sato, Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold, RIMS Kokyuroku 439 (1981), 30–46.

    Google Scholar 

  27. J. Satsuma, A Wronskian representation of N-soliton solutions of nonlinear evolution equations, J. Phys. Soc. Jpn. 46 (1979), 356–360.

    Google Scholar 

  28. J. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. (3) 92 (2006), 345–380.

    Article  MATH  Google Scholar 

  29. J. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebr. Comb. 5 (1996), 353–385.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author (YK) was partially supported by NSF grants DMS-0806219 and DMS-1108813. The second author (LW) was partially supported by an NSF CAREER award and an Alfred Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kodama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kodama, Y., Williams, L. (2013). Combinatorics of KP Solitons from the Real Grassmannian. In: Buan, A., Reiten, I., Solberg, Ø. (eds) Algebras, Quivers and Representations. Abel Symposia, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39485-0_8

Download citation

Publish with us

Policies and ethics