A New Algorithm of Frequency Estimation for Frequency-Hopping Signal

  • Jun Lv
  • Weitao Sun
  • Tong Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7996)


The performance of ESPRIT (Estimated Signal Parameters via Rotational Invariance Technique) algorithm about frequency estimation is obviously declined, when the SNR of signal is relatively low. Aiming at this problem, an improved ESPRIT algorithm is presented. The algorithm is based on spectrum interception of noise suppression, and can narrow the selection area of β in the improved ESPRIT algorithm based on rotational transformation of autocorrelation matrix, using γ local maximum point of DFT spectrum. The algorithm not only reduces the computational complexity, but also weakens the impact of noise on frequency estimation of signal. Theoretical analysis and simulation results verify the effectiveness and feasibility of the proposed algorithm.


Frequency estimation an ESPRIT algorithm noise suppression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roy, R., Kailath, T.: ESPRIT:Estimation of Signal Parameter via Rotational Invariance Technique. IEEE Trans. Acoust, Speech Signal Processing 37(7), 984–995 (1989)CrossRefGoogle Scholar
  2. 2.
    Bao, Z.Q., Wu, S.J., Zhang, L.R.: A Novel and Low Complexity ESPRIT Method. Journal of Electronics & Information Technology 29(9), 2042–2046 (2007)Google Scholar
  3. 3.
    Li, Y.B., Wang, T., Wang, J.L.: The Echo Frequency Estimation of Anti-torpedo Torpedo Acoustic Fuse Based on Fast ESPRIT. Command Control & Simulation 33(6), 99–101 (2011)Google Scholar
  4. 4.
    Wang, Q., Chen, W.P.: Rearch on the Frequency Estimation Based on ESPRIT Algorithm. Electronics R & D, 9–11 (2010)Google Scholar
  5. 5.
    Al-Ardi, E.M., Shubair, R.M., AL-Mualla, M.E.: Performance Evaluation of Direction Finding Algorithms for Adaptive Antenna Arrays. In: Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 735–738. IEEE, Sharha (2003)CrossRefGoogle Scholar
  6. 6.
    El-Shafey, M.H.: ESPRIT Condition in Signal Parameter Estimation. In: Proceedings of 32nd International Conference on Sarnoff Symposium, vol. 3, pp. 1–5 (2009)Google Scholar
  7. 7.
    Cui, H., Qian, Y.Y., Li, D.H.: Direction of arrival research on extracting signal subspace of ESPRIT algorithm. Computer Engineering and Design 30(13), 3507–3509 (2009)Google Scholar
  8. 8.
    Cui, Y.: Noise Suppression Frequency Estimation Algorithm Based on ESPRIT. Computer Engineering 36(14), 245–248 (2010)Google Scholar
  9. 9.
    Li, Y., Yang, J.P.: An ESPRIT Based Improved Algorithm. Signal Processing 25(3), 508–511 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jun Lv
    • 1
  • Weitao Sun
    • 1
  • Tong Li
    • 1
  1. 1.Department of Information EngineeringAcademy of Armored Forces EngineeringBeijingChina

Personalised recommendations