Advertisement

Bat Algorithm with Recollection

  • Wen Wang
  • Yong Wang
  • Xiaowei Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7996)

Abstract

Bat algorithm(BA) is a new swarm intelligence optimization algorithm. However, bat algorithm has the obvious phenomenon of the premature convergence problem and is easily trapped into local optimum. In order to overcome the shortcoming of the BA algorithm, we proposed an improved bat algorithm called bat algorithm with recollection(RBA). Experiment were conducted on some benchmark functions. The experimental results show that the RBA can effectively avoid the premature convergence problem and has a good performance of global convergence property.

Keywords

Bat algorithm(BA) Bat algorithm with recollection(RBA) disturbance factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhort, R.: Particle swarm optimization. In: Perth: IEEE International Conference on Neural networks, pp. 1941–1948 (1995)Google Scholar
  2. 2.
    Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A Novel Meta-heuristic Optimization Algorithm Inspired by Group Hunt-ing of Animals: Hunting Search. Computers & Mathematics with Applications 60(7), 2087–2098 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    He, S., Wu, Q.H., Saunders, J.R.: A group search optimizer for neural network training. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 934–943. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Lemasson, B.H., Goodwin, R.A.: Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention. Journal of Theoretical Biology 261(4), 501–510 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Coloria, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics: PartB 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Jiao, L.C., Wang, L.: Anovel genetic algorithm based on immunity. IEEE Transaction on System, Man and Cybernetic 30(5), 552–561 (2000)CrossRefGoogle Scholar
  7. 7.
    Li, X.-L., Qian, J.-X.: An optimizing method based on autonomous animals: fish-swarm algorithm. Systems engineering theory and Practice 22(11), 32–38 (2002)Google Scholar
  8. 8.
    Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.): ICIC 2010. LNCS, vol. 6216. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  9. 9.
    Krishnanand, K.N., Ghose, D.: Glowworm swarm based optimization algorithm for multimodel functions with collective robotics applications. Multiagent and Grid Systems 2(3), 209–222 (2006)zbMATHGoogle Scholar
  10. 10.
    Chen, J.-R., Wang, Y.: Using fishing strategy optimization method. Computer engineering and Applications 45(9), 53–56 (2009)Google Scholar
  11. 11.
    Yang, X.-S., Deb, S.: Cuckoo search via Levy flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, India (2009)CrossRefGoogle Scholar
  12. 12.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wen Wang
    • 1
  • Yong Wang
    • 1
  • Xiaowei Wang
    • 1
  1. 1.College of Information Science and EngineeringGuangxi University for NationalitiesNanningChina

Personalised recommendations