Advertisement

Firefly Algorithm and Pattern Search Hybridized for Global Optimization

  • Mahdiyeh Eslami
  • Hussain Shareef
  • Mohammad Khajehzadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7996)

Abstract

Firefly optimization algorithm is one of the latest swarm intelligence based optimization algorithm. A new hybrid optimization algorithm, which combines pattern search with firefly algorithm, namely FAPS, is proposed for numerical global optimization. There are two alternative phases of the proposed algorithm: the global exploration phase realized by firefly algorithm and the exploitation phase completed by pattern search. The performance of the proposed FAPS algorithm was tested on a comprehensive set of benchmark functions. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and stability and the performance of firefly algorithm is much improved by introducing a pattern search method.

Keywords

global optimization firefly algorithm pattern search hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press (1975)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  3. 3.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Information Sciences 179(13), 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: Modified particle swarm optimization for optimum design of spread footing and retaining wall. Journal of Zhejiang University-Science A 12(6), 415–427 (2011)CrossRefGoogle Scholar
  6. 6.
    Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search algorithm for slope stability analysis. Engineering Applications of Artificial Intelligence 25(8), 1589–1597 (2012)CrossRefGoogle Scholar
  7. 7.
    Eslami, M., Shareef, H., Mohamed, A., Khajehzadeh, M.: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems. International Journal of Electrical Power & Energy Systems 43(1), 1467–1478 (2012)CrossRefGoogle Scholar
  8. 8.
    Eslami, M., Shareef, H., Mohamed, A., Khajehzadeh, M.: Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller. Journal of Central South University of Technology 19(4), 923–932 (2012)CrossRefGoogle Scholar
  9. 9.
    Dong, Y., Tang, J., Xu, B., Wang, D.: An application of swarm optimization to nonlinear programming. Computers & Mathematics with Applications 49(11-12), 1655–1668 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver Press, Beckington (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mahdiyeh Eslami
    • 1
  • Hussain Shareef
    • 1
  • Mohammad Khajehzadeh
    • 2
  1. 1.Electrical, Electronic and Systems Engineering DepartmentNational University of MalaysiaSelangorMalaysia
  2. 2.Civil Engineering Department, Anar BranchIslamic Azad UniversityAnarIran

Personalised recommendations