Skip to main content

The Law of Large Numbers for the Free Multiplicative Convolution

  • Conference paper
  • First Online:
Operator Algebra and Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 58))

Abstract

In classical probability the law of large numbers for the multiplicative convolution follows directly from the law for the additive convolution. In free probability this is not the case. The free additive law was proved by D. Voiculescu in 1986 for probability measures with bounded support and extended to all probability measures with first moment by J.M. Lindsay and V. Pata in 1997, while the free multiplicative law was proved only recently by G. Tucci in 2010. In this paper we extend Tucci’s result to measures with unbounded support while at the same time giving a more elementary proof for the case of bounded support. In contrast to the classical multiplicative convolution case, the limit measure for the free multiplicative law of large numbers is not a Dirac measure, unless the original measure is a Dirac measure. We also show that the mean value of lnx is additive with respect to the free multiplicative convolution while the variance of lnx is not in general additive. Furthermore we study the two parameter family (μ α, β ) α, β ≥ 0 of measures on (0, ) for which the S-transform is given by \(S_{\mu _{\alpha,\beta }}(z) = {(-z)}^{\beta }{(1 + z)}^{-\alpha }\), 0 < z < 1.

Mathematics Subject Classification (2010): 46L54, 60F05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arizmendi, O., Hasebe, T.: Classical and free infinite divisibility for Boolean stable laws (2012), arXiv:1205.1575

    Google Scholar 

  2. Banica, T., Belinschi, S.T., Capitaine, M., Collins, B.: Free Bessel laws. Canad. J. Math. 63(1), 3–37 (2011). DOI 10.4153/CJM-2010-060-6. URL http://dx.doi.org/10.4153/CJM-2010-060-6

    Google Scholar 

  3. Bercovici, H., Pata, V.: Stable laws and domains of attraction in free probability theory. Ann. of Math. (2) 149(3), 1023–1060 (1999). DOI 10.2307/121080. URL http://dx.doi.org/10.2307/121080. With an appendix by Philippe Biane

  4. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993). DOI 10.1512/iumj.1993.42.42033. URL http://dx.doi.org/10.1512/iumj.1993.42.42033

  5. Biane, P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998). DOI 10.1007/ PL00004363. URL http://dx.doi.org/10.1007/PL00004363

  6. Haagerup, U., Larsen, F.: Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176(2), 331–367 (2000). DOI 10.1006/ jfan.2000.3610. URL http://dx.doi.org/10.1006/jfan.2000.3610

    Google Scholar 

  7. Haagerup, U., Schultz, H.: Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100(2), 209–263 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Haagerup, U., Schultz, H.: Invariant subspaces for operators in a general II1-factor. Publ. Math. Inst. Hautes Études Sci. (109), 19–111 (2009). DOI 10.1007/s10240-009-0018-7. URL http://dx.doi.org/10.1007/s10240-009-0018-7

  9. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions. Vol. 1, second edn. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York (1994). A Wiley-Interscience Publication

    Google Scholar 

  10. Larsen, F.: Powers of R-diagonal elements. J. Operator Theory 47(1), 197–212 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Lindsay, J.M., Pata, V.: Some weak laws of large numbers in noncommutative probability. Math. Z. 226(4), 533–543 (1997). DOI 10.1007/PL00004356. URL http://dx.doi.org/10.1007/PL00004356

  12. Mlotkowski, W., Penson, K.A., Zyczkowski, K.: Densities of the Raney distributions (2012), arXiv:1211.7259

    Google Scholar 

  13. Penson, K.A., Zyczkowski, K.: Product of Ginibre matrices: Fuss-Catalan and Raney distributions. Phys. Rev. E 83, 061,118 (2011), arXiv:1103.3453

    Google Scholar 

  14. Rosenthal, J.S.: A first look at rigorous probability theory, second edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006)

    Book  MATH  Google Scholar 

  15. Tucci, G.H.: Limits laws for geometric means of free random variables. Indiana Univ. Math. J. 59(1), 1–13 (2010). DOI 10.1512/iumj.2010.59.3775. URL http://dx.doi.org/10.1512/iumj.2010.59.3775

  16. Voiculescu, D.: Addition of certain noncommuting random variables. J. Funct. Anal. 66(3), 323–346 (1986). DOI 10.1016/0022-1236(86)90062-5. URL http://dx.doi.org/10.1016/0022-1236(86)90062-5

    Google Scholar 

  17. Voiculescu, D.: Multiplication of certain noncommuting random variables. J. Operator Theory 18(2), 223–235 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables, CRM Monograph Series, vol. 1. American Mathematical Society, Providence, RI (1992). A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups

    Google Scholar 

Download references

Acknowledgements

The first author is supported by ERC Advanced Grant No. OAFPG 27731 and the Danish National Research Foundation through the Center for Symmetry and Deformation (DNRF92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Haagerup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haagerup, U., Möller, S. (2013). The Law of Large Numbers for the Free Multiplicative Convolution. In: Carlsen, T., Eilers, S., Restorff, G., Silvestrov, S. (eds) Operator Algebra and Dynamics. Springer Proceedings in Mathematics & Statistics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39459-1_8

Download citation

Publish with us

Policies and ethics