Skip to main content

The Haagerup Property for Discrete Measured Groupoids

  • Conference paper
  • First Online:
Operator Algebra and Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 58))

Abstract

We define the Haagerup property in the general context of countable groupoids equipped with a quasi-invariant measure. One of our objectives is to complete an article of Jolissaint devoted to the study of this property for probability measure preserving countable equivalence relations. Our second goal, concerning the general situation, is to provide a definition of this property in purely geometric terms, whereas this notion had been introduced by Ueda in terms of the associated inclusion of von Neumann algebras. Our equivalent definition makes obvious the fact that treeability implies the Haagerup property for such groupoids and that it is not compatible with Kazhdan’s property (T).

Mathematics Subject Classification (2010): 46L55, 37A15, 22A22, 20F65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [8], a countable measured groupoid is called r-discrete. !countable measured !discrete measured Another difference is that we have swapped here the definitions of ν and ν −1.

  2. 2.

    When necessary, we shall write \(\hat{m}\) the element m ∈ M, when viewed in \({L}^{2}(M,\varphi )\), in order to stress this fact.

  3. 3.

    In [25], \(\mathcal{K}(\left \langle M,e_{A}\right \rangle )\) is denoted \(\mathcal{I}_{0}(\left \langle M,e_{A}\right \rangle )\).

  4. 4.

    The reader should not confuse L(f): L 2(G, ν) → L 2(G, ν) with its restriction \(L_{f}: {L}^{2}(A,\tau _{\mu }) \rightarrow {L}^{2}(G,\nu )\).

References

  1. Adams, S.: Trees and amenable equivalence relations. Ergodic Theory Dynam. Systems 10(1), 1–14 (1990). DOI 10.1017/S0143385700005368. URL http://dx.doi.org/10.1017/S0143385700005368

  2. Adams, S.R., Spatzier, R.J.: Kazhdan groups, cocycles and trees. Amer. J. Math. 112(2), 271–287 (1990). DOI 10.2307/2374716. URL http://dx.doi.org/10.2307/2374716

    Google Scholar 

  3. Akemann, C.A., Walter, M.E.: Unbounded negative definite functions. Canad. J. Math. 33(4), 862–871 (1981). DOI 10.4153/CJM-1981-067-9. URL http://dx.doi.org/10.4153/CJM-1981-067-9

    Google Scholar 

  4. Alvarez, A.: Une théorie de Bass-Serre pour les relations d’équivalence et les groupoïdes boréliens. Ph.D. thesis, Ecole Normale Supérieure de Lyon (2008). URL http://www.univ-orleans.fr/mapmo/membres/alvarez/MAPMO/accueil.html

  5. Alvarez, A., Gaboriau, D.: Free products, orbit equivalence and measure equivalence rigidity. Groups Geom. Dyn. 6(1), 53–82 (2012). DOI 10.4171/GGD/150. URL http://dx.doi.org/10.4171/GGD/150

  6. Anantharaman-Delaroche, C.: Cohomology of property T groupoids and applications. Ergodic Theory Dynam. Systems 25(4), 977–1013 (2005). DOI 10.1017/S0143385704000884. URL http://dx.doi.org/10.1017/S0143385704000884

  7. Anantharaman-Delaroche, C.: Old and new about treeability and the Haagerup property for measured groupoids (2011), arXiv:1105.5961v1

    Google Scholar 

  8. Anantharaman-Delaroche, C., Renault, J.: Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36. L’Enseignement Mathématique, Geneva (2000). With a foreword by Georges Skandalis and Appendix B by E. Germain

    Google Scholar 

  9. Boca, F.: On the method of constructing irreducible finite index subfactors of Popa. Pacific J. Math. 161(2), 201–231 (1993). URL http://projecteuclid.org/getRecord?id=euclid.pjm/1102623229

  10. Cherix, P.A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: Groups with the Haagerup property. Gromov’s a-T-menability, Progress in Mathematics, vol. 197. Birkhäuser Verlag, Basel (2001). DOI 10.1007/978-3-0348-8237-8. URL http://dx.doi.org/10.1007/978-3-0348-8237-8

  11. Choda, M.: Group factors of the Haagerup type. Proc. Japan Acad. Ser. A Math. Sci. 59(5), 174–177 (1983). URL http://projecteuclid.org/getRecord?id=euclid.pja/1195515589

  12. Connes, A.: Classification des facteurs. In: Operator algebras and applications, Part 2 (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, pp. 43–109. Amer. Math. Soc., Providence, R.I. (1982)

    Google Scholar 

  13. Dixmier, J.: von Neumann algebras, North-Holland Mathematical Library, vol. 27. North-Holland Publishing Co., Amsterdam (1981). With a preface by E. C. Lance, Translated from the second French edition by F. Jellett

    Google Scholar 

  14. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234(2), 289–324 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haagerup, U.: An example of a nonnuclear \({C}^{{\ast}}\)-algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79). DOI 10.1007/BF01410082. URL http://dx.doi.org/10.1007/BF01410082

  16. Hahn, P.: The regular representations of measure groupoids. Trans. Amer. Math. Soc. 242, 35–72 (1978). DOI 10.2307/1997727. URL http://dx.doi.org/10.2307/1997727

    Google Scholar 

  17. de la Harpe, P., Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger). Astérisque (175), 158 (1989). With an appendix by M. Burger

    Google Scholar 

  18. Jolissaint, P.: The Haagerup property for measure-preserving standard equivalence relations. Ergodic Theory Dynam. Systems 25(1), 161–174 (2005). DOI 10.1017/S0143385704000562. URL http://dx.doi.org/10.1017/S0143385704000562

  19. Jones, V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). DOI 10.1007/BF01389127. URL http://dx.doi.org/10.1007/BF01389127

  20. Kechris, A.S.: Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156. Springer-Verlag, New York (1995). DOI 10.1007/978-1-4612-4190-4. URL http://dx.doi.org/10.1007/978-1-4612-4190-4

  21. Kechris, A.S.: Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160. American Mathematical Society, Providence, RI (2010)

    Book  Google Scholar 

  22. Moore, C.C.: Virtual groups 45 years later. In: Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, Contemp. Math., vol. 449, pp. 263–300. Amer. Math. Soc., Providence, RI (2008). DOI 10.1090/conm/449/08716. URL http://dx.doi.org/10.1090/conm/449/08716

  23. Paschke, W.L.: Inner product modules over \({B}^{{\ast}}\)-algebras. Trans. Amer. Math. Soc. 182, 443–468 (1973)

    MathSciNet  MATH  Google Scholar 

  24. Popa, S.: Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in Mathematics, vol. 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1995)

    Google Scholar 

  25. Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. of Math. (2) 163(3), 809–899 (2006). DOI 10.4007/annals.2006.163.809. URL http://dx.doi.org/10.4007/annals.2006.163.809

  26. Popa, S., Rădulescu, F.: Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra. Duke Math. J. 57(2), 485–518 (1988). DOI 10.1215/S0012-7094-88-05722-5. URL http://dx.doi.org/10.1215/S0012-7094-88-05722-5

    Google Scholar 

  27. Ramsay, A.: Virtual groups and group actions. Advances in Math. 6, 253–322 (1971) (1971)

    Google Scholar 

  28. Ramsay, A., Walter, M.E.: Fourier-Stieltjes algebras of locally compact groupoids. J. Funct. Anal. 148(2), 314–367 (1997). DOI 10.1006/jfan.1996.3083. URL http://dx.doi.org/10.1006/jfan.1996.3083

    Google Scholar 

  29. Renault, J.: A groupoid approach to \({C}^{{\ast}}\)-algebras, Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

    Google Scholar 

  30. Rieffel, M.A.: Morita equivalence for \({C}^{{\ast}}\)-algebras and \({W}^{{\ast}}\)-algebras. J. Pure Appl. Algebra 5, 51–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takesaki, M.: Conditional expectations in von Neumann algebras. J. Functional Analysis 9, 306–321 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ueda, Y.: Notes on treeability and costs for discrete groupoids in operator algebra framework. In: Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, pp. 259–279. Springer, Berlin (2006). DOI 10.1007/978-3-540-34197-0_13. URL http://dx.doi.org/10.1007/978-3-540-34197-0_13

  33. Zimmer, R.J.: On the cohomology of ergodic actions of semisimple Lie groups and discrete subgroups. Amer. J. Math. 103(5), 937–951 (1981). DOI 10.2307/2374253. URL http://dx.doi.org/10.2307/2374253

  34. Zimmer, R.J.: Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Anantharaman-Delaroche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anantharaman-Delaroche, C. (2013). The Haagerup Property for Discrete Measured Groupoids. In: Carlsen, T., Eilers, S., Restorff, G., Silvestrov, S. (eds) Operator Algebra and Dynamics. Springer Proceedings in Mathematics & Statistics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39459-1_1

Download citation

Publish with us

Policies and ethics